Нормальная плотность аккумулятора: Плотность аккумулятора. Какая в электролите считается нормальной? Обязательно знать

Эксплуатация, зарядка, хранение аккумуляторной батареи

23.12.2019

Содержание


1. Техническое отступление

2.Основные характеристики аккумуляторных батарей


2.1. Расход воды

2.2. Долговечность батареи

2.3. Рекомендации по эксплуатации


3. Терминология

4. Маркировка АКБ

5. Выбор и покупка АКБ

6. Установка АКБ

7. Рекомендации по эксплуатации и обслуживанию


7.1. Обслуживание АКБ в процессе эксплуатации

7.2. Продление жизни новой батарее

7.3. Зарядка аккумулятора зарядным устройством


8. Особенности эксплуатации АКБ в зимний период


8.1. Прикуривание от другого автомобиля


9. Особенности эксплуатации АКБ в летний период

10. Вопросы безопасности

11. Хранение аккумуляторной батареи

12. Приложения


12. 1. Реанимация аккумулятора

12.2. Ещё несколько способов, основанных на использовании электрического тока

Скрыть содержание

1. Техническое отступление

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с инжекторным впрыском аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий распределённым впрыском — одному богу известно… Можно загубить компьютер.
Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.

Как наглядно видно из формулы, при разряде батареи (стрелка вправо) происходит взаимодействие активной массы положительных и отрицательных пластин с электролитом (серной кислотой), в результате чего образуется сульфат свинца, осаждающийся на поверхности отрицательно заряженной пластины и вода. В итоге плотность электролита падает. При зарядке батареи от внешнего источника происходят обратные электрохимические процессы (стрелка влево), что приводит к восстановлению на отрицательных электродах чистого свинца и на положительных — диоксида свинца. Одновременно с этим повышается плотность электролита.
Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок (см. рис.1).

Каждая банка является законченным источником питания напряжением порядка 2. 1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток. Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6-12.8 В. Любая из пластин, как положительная, так и отрицательная, есть ни что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — диоксид свинца.
Вес залитой АКБ ёмкостью 55 Ач составляет около 16.5 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 4,5 л), массы свинца и всех его соединений — 10 кг, а также 1 кг, приходящегося на долю бака и сепараторов.

2. Основные характеристики аккумуляторных батарей

2. 0. Электродвижущая сила (ЭДС)

Зависимость ЭДС (грубо говоря, напряжение на выводах аккумулятора) от плотности электролита выглядит так:

Е = 6 * (0,84 + р) , где Е — ЭДС аккумулятора , (В) р — приведенная к температуре 5°С плотность электролита , г/мл

2.1. Расход воды

Показатель, имеющий непосредственное отношение к степени обслуживаемости батареи. Определяется в лабораторных условиях. Батарея считается необслуживаемой, если она имеет очень низкий расход воды в эксплуатации. Необслуживаемые батареи не требуют доливки дистиллированной воды в течении года и более при условии исправной работы регулятора напряжения.

На расход воды прямое влияние оказывает процентное содержание сурьмы в свинцовых решетках пластин. Как известно, сурьма добавляется для придания пластинам достаточной механической прочности. Однако у каждой медали есть обратная сторона. Сурьма способствует расщеплению воды на кислород и водород, следствием чего является выкипание воды и снижение уровня электролита. В батареях предыдущего поколения содержание сурьмы доходило до 10%, в современных этот показатель снижен до 1.5 %.

Панацею от этой беды фирмы видят в освоении т.н. гибридной технологии — замене сурьмы в одной из пластин на кальций. Кальций в решетке является веществом нейтральным по отношению к воде, не снижая при этом механической прочности решеток. А потому разложения воды не происходит и уровень электролита остается неизменным.

Преимущества «кальциевых» АКБ — можно устанавливать в местах , не не требующих удобного доступа для обслуживания. Меньше вероятность выхода из строя из-за коррозии решеток электродов. Лучшие стартерные характеристики.

Недостаток «кальциевых» АКБ — при глубоких разрядах происходит образование нерастворимых солей кальция, и емкость АКБ необратимо теряется. Производители АКБ пытаются устранить этот недостаток добавлением в АКБ серебра и др. компонентов, результат пока окончательно не ясен.

2.2. Долговечность батареи

Средний срок службы современных АКБ при условии соблюдения правил эксплуатации — а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения — составляет 4-5 лет.

Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1.12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин. Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда. (Вспомните — на основе теории двойной сульфатации построен принцип работы батарей). Но при малом разряде и последующей зарядке батарея легко восстанавливается до исходного состояния. Это возможно и при глубоком разряде батареи, но только в том случае, если следом сразу, же последует заряд. Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности, ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах. А это означает, что начался необратимый процесс сульфатации.

Не менее опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород, и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Ну а если его нет? В этом случае также можно довольно просто оценить зарядное напряжение. Для этого запустите и прогрейте двигатель, установив средние обороты и подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи. Нормальный зарядный режим батареи обеспечивается в диапазоне 14±0.5В. Если напряжение меньше — стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения. Впрочем, точно также вина ложится на регулятор, если напряжение превышает 14. 5В.

В последнее время широкое распространение получили сепараторы карманного типа — т.н. конвертные сепараторы. Их название говорит за себя — в эти конверты помещают одноименно заряженные пластины. Такая конструкция увеличивает срок службы батареи, так как осыпающаяся в процессе эксплуатации активная масса остается в конверте, тем самым предотвращается замыкание пластин.

2.3. Рекомендации по эксплуатации

Батарея, не эксплуатировавшаяся в течении длительного времени (4-5 мес.) нуждается в подзарядке. Связано это с тем, что батареям свойственно такое явление, как саморазряд. На графиках рис.2,3 показаны характеризующие саморазряд величины для различных батарей. В первом случае — это снижение плотности от времени хранения, во втором — падение напряжения.

Впрочем, зачастую подзарядки требует и находящаяся в эксплуатации батарея. Плотность полностью заряженной батареи составляет 1.27- 1.28 г/см3, напряжение — 12.5 В. О степени разряженности батареи судят по плотности электролита. Чем ниже плотность электролита, тем сильнее батарея разряжена. Уменьшение плотности на 0.01 г/см3 по сравнению с номинальной означает, что батарея разрядилась примерно на 6 — 8%. Используя график (см. рис.4) можно оценить зависимость степени разряженности батареи от плотности. Степень разряженности определяют по той банке, в которой плотность электролита минимальная. Всем известна аксиома, тем не менее, позволим повторить ее еще раз — батарею, разряженную летом более чем на 50%, а зимой более чем на 25%, необходимо снять с автомобиля и зарядить. При этом следует помнить, что пониженная плотность зимой более опасна, т.к. кроме всего прочего может привести к замерзанию электролита. Так, при плотности электролита 1.2 г/см3 температура его замерзания составляет около -20°С.
Также необходимо подзарядить батарею, если плотность в разных банках отличается более чем на 0.02 г/см3. Оптимальной является зарядка батареи током, равным 0.05 от ее ёмкости. Для батареи с ёмкостью 55 Ач эта величина составляет 2. 75 А. Чем меньше зарядный ток, тем глубже заряд. Однако не стоит впадать в крайность — при совсем низком токе батарея просто не «закипит», к тому же время зарядки будет несравнимо большим. Наоборот, при очень большом токе батарея «закипит» значительно быстрее, но при этом не успеет зарядиться на все 100%. Признаками окончания зарядки служит бурное выделение газа (т.н. «кипение») и неизменяющаяся на протяжении 1-2 часов плотность электролита.
Для ориентировочной оценки времени, требуемого на зарядку батареи, можно воспользоваться следующим алгоритмом.

Первоначально, используя график (рис.4) необходимо определить степень разряженности батареи, исходя из реальной плотности АКБ, замеренной ареометром. Далее по степени разряженности определяем потерянную ёмкость (или ёмкость, которую необходимо принять батарее).
Затем, выбрав величину зарядного тока, вычисляем ориентировочное время зарядки по формуле:

Тут следует отметить, что не вся энергия идет на повышение ёмкости. КПД процесса составляет 60-80%, остальное тратится на нагрев, а также связанные с этим электрохимические процессы. Потому реальное время увеличивается примерно в полтора раза от расчетного (что и учитывается коэффициентом «1.5» в формуле).

Нужно сказать, что использование данного алгоритма оправдано лишь для облегчения процедуры, но ни в коей мере не избавляет от контроля за ходом зарядки. Процесс заряда, а особенно его окончание Вам необходимо контролировать самому, дабы не прозевать начало бурного кипения.

Другой вариант — использование для этих целей автоматических зарядных устройств, отличающихся тем, что зарядка идет при постоянном напряжении, но автоматически изменяющемся в зависимости от степени заряженности батареи токе. При этом зарядное устройство перестает давать ток, если батарея полностью заряжена. Принцип, используемый в подобных устройствах аналогичен зарядке от генератора на автомобиле.

Для примера определим время зарядки батареи ёмкостью 55 Ач током в 5А, плотность которой составляет 1. 25 г/см3. Как видно из графика, при данной плотности батарея разряжена на 25%, что означает потерю ёмкости на величину

Таким образом, примерное время зарядки

Каждодневным способом зарядки батареи является ее заряд от бортовой сети автомобиля (естественно, при условии исправности последней). При данном способе, во первых, невозможен перезаряд, а во-вторых, происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы.
Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея начинает принимать заряд только после прогрева электролита до положительной температуры, что при эксплуатации в зимних условиях происходит примерно через час после начала движения. Именно этим и опасен довольно распространенный, по крайней мере, в нашем автомобильном городе, способ эксплуатации транспортных средств. Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату. Из этого следует, что зимой необходимо проверять состояние АКБ и своевременно подзаряжать ее регулярно
Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы. Нормальный запуск двигателя при однократном вращении стартера в течении 10с забирает ёмкость 300А х 10с = 3000 Ас = 0. 83 Ач, что составляет около 1.5% от ёмкости аккумулятора.
При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.
Каковы же признаки выхода из строя батареи? Батарея не заряжается, плотность низкая и не повышается в процессе заряда. Большой саморазряд — батарея зарядилась, но не держит заряд. Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.
Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.
Батарея начинает принимать заряд лишь только после прогрева электролита до положительной температуры (как вы понимаете, при температуре воздуха -20°С температура электролита в батарее хранящегося на свежем воздухе автомобиля будет примерно такой же. )
Коэффициент полезного действия процесса зарядки составляет примерно 50%.
Каждый автомобильный генератор характеризуется следующими показателями:
ток отдачи генератора при работе двигателя на холостом ходу.
ток отдачи генератора при работе двигателя на номинальных оборотах.
Для ВАЗовских автомобилей эти цифры имеют следующие значения:

Таблица 1

Модель автомобиля…………………..2101-2106……2108-2109……2110

ток отдачи на холостом ходу…………….16………………24…………..35

ток отдачи на номинальных оборотах 42……………….55…………..80

Как видно из таблицы, на последних моделях автомобилей Волжского автозавода устанавливаются генераторы, имеющие характеристики тока отдачи, в два раза превосходящие по величине характеристики генераторов первых моделей.

И наконец, примерное потребление энергии автомобильными потребителями:

Таблица 2

потребитель……….ток, А (приблизительно)

зажигание. …………….2

габариты……………….4

ближний свет…………9

дальний свет………..12

обогрев стекла……10-11

стеклоподьемник…20-30

вентилятор отопителя:

1-я скорость…………5-7

2-я скорость……….10-11

стеклоочистители…3-5

магнитола…………….5

ИТОГО……………….38-48

Таким образом, оставленные включенными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, т.к. разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются заряженными далеко не на 100%).

Аналогично можно прикинуть, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля ВАЗ-2108 на холостом ходу составляет 24А. Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22А. Используя таблицу 2, нетрудно прикинуть, что можно включать с тем, чтобы хоть немного досталось бы и аккумулятору (при этом помните про КПД зарядки, составляющий 50%).

Для владельцев иномарок с автоматической коробкой передач картина ещё более сложная. Обычно, стоя в пробке или на светофоре, Вы не переключаетесь на нейтраль, а давите ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток, выдаваемый генератором, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее, чем у отечественных автомобилей.

Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты проводимых в ГДР исследований говорят о том, что при эксплуатации автомобиля в очень тяжелых условиях (испытания по так называемому режиму «город-зима-ночь») аккумулятор получает порядка 1Ач в час

3.

Терминология

Аккумуляторная батарея — один из основных элементов электрооборудования автомобиля, поскольку она накапливает и хранит электроэнергию, обеспечивает запуск двигателя в различных климатических условиях, а также питает электроприборы при неработающем двигателе.

Автомобильные свинцово-кислотные 12-вольтовые АКБ состоят из 6-ти последовательно соединенных элементов (банок), объединенных в общий корпус. Каждая банка имеет газоотвод, конструкции которого могут существенно отличаться.

Электролит представляет собой раствор серной кислоты в дистиллированной воде (для средней полосы России плотностью 1.27-1.28 г/см3 при t=+20°С). Кипение электролита — бурное выделение газа при электролитическом разложении воды с выделением кислорода и водорода. Это происходит во время заряда батареи.

Саморазряд — самопроизвольное снижение ёмкости АКБ при бездействии. Скорость саморазряда зависит от материала пластин, химических примесей в электролите, его плотности, от чистоты верхней части корпуса батареи и продолжительности ее эксплуатации.

Напряжение полностью заряженной аккумуляторной батареи без нагрузки (ЭДС — электродвижущая сила) должно находиться в пределах 12.6-12.9 В. Напряжение в бортовой сети автомобиля при работающем двигателе несколько выше, чем на клеммах АКБ, и должно находиться в пределах 14.0-14.2 В (0,2 В от крайних значений). Значение напряжения ниже 13.8 В ведет к недозаряду батареи, а выше 14.4В — к перезаряду, что одинаково пагубно сказывается на ее сроке службы.

Полярность аккумуляторной батареи — термин, определяющий расположение токосъемных выводов на ее корпусе. На зарубежных батареях полярность может быть прямой или обратной, т. е. ориентировка положительного и отрицательного выводов относительно корпуса может быть различной. По российскому стандарту (если смотреть со стороны выводов) отрицательный (-) должен располагаться справа, положительный (+) слева.

Емкость батареи — способность батареи принимать и отдавать энергию — измеряется в ампер-часах (Ач). Для оценки ёмкости батареи принята методика 20-ти часового разряда током 0. 05С20 (т.е. током, равным 5% от номинальной ёмкости). Т.е., если ёмкость батареи 55Ач, то разряжая ее током 2.75 А, она полностью разрядится за 20 часов. Аналогично для батарей ёмкостью 60Ач полный 20-ти часовой разряд произойдет при чуть большем токе разряда — 3А.

Данная характеристика определяет возможность питать потребителей в экстремальной ситуации (при отказе генератора). Характеризуется объемом активной массы.

Значение тока холодного старта при -18°С (по DIN) — Величина тока, которую батарея способна отдать при пуске двигателя при температуре -18°С. Наиболее важная характеристика, напрямую сказывающаяся на пуске двигателя. Ведь при -20°С ток, потребляемый стартером, составляет порядка 300А. (Для пуска в летнее время горячего двигателя этот же показатель равен 100-120А.) Значение стартового тока определяется конструкцией батареи, пластин, сепараторов. Сепараторы карманного типа без каких-либо других дополнений увеличивают напряжение батареи на 0.3В, одновременно улучшая стартовые характеристики. Чем ниже внутреннее сопротивление батареи, тем выше стартовый ток, тем надежнее пуск двигателя при низких температурах.

Резервная ёмкость — время, в течении которого батарея сможет обеспечить работу потребителей в аварийном режиме. Величина резервной ёмкости, выраженная в минутах, последнее время все чаще проставляется изготовителями батарей после значения тока холодного старта.

Корпус современных АКБ изготавливается из пластмассы, в большинстве случаев полупрозрачной, позволяющей контролировать уровень электролита.

Необслуживаемые батареи. Сразу следует оговориться, что этот термин не должен пониматься буквально и восприниматься как руководство к бездействию. Это название говорит об улучшенных потребительских свойствах батареи. Необслуживаемые АКБ требуют долива воды не чаще одного раза в год при условии использования их на автомобилях с исправным электрооборудованием и среднегодовым пробегом 15-20 тыс. км. Встречаются конструкции, исключающие всякое вмешательство на всем протяжении срока службы, но они особенно критичны к состоянию автомобильного электрооборудования.

Большинство необслуживаемых батарей выпускаются заводами-изготовителями, залитыми электролитом. Так как эти батареи имеют значительно меньший саморазряд, они могут храниться от 6 месяцев до 1 года без подзаряда. Саморазряд новых необслуживаемых батарей за 12 месяцев может составить до 50% от номинальной ёмкости.

4. Маркировка АКБ

На современные аккумуляторные батареи наносится следующая маркировка:

Некоторые батареи имеют такую маркировку:

Несмотря на то, что после ёмкости стоит значение 280А, цифра, интересующая нас и показывающая ток холодного старта по принятому у нас стандарту DIN равна 255А.
Обозначения основных характеристик на батареях различных производителей отличаются друг от друга. Большинство европейских производителей и значительная их часть в Азии руководствуются промышленным стандартом Германии DIN 43539 часть 2, который оговаривает два основных параметра: ёмкость батареи, измеряемую в ампер-часах (Ач) при +25°С, и ток стартерного разряда в амперах (А) при -18°С.
Батареи американских производителей испытываются по требованию американского стандарта SAE J537g, который включен в международный стандарт BCI и также вводит два основных параметра: резервную ёмкость, измеряемую в минутах при +27°С, и ток холодной прокрутки — в амперах при -18С. Стандарт SAE не предусматривает измерение ёмкости батареи в ампер-часах.
Первый рассматривает способность батареи к длительным разрядам меньшими токами, второй — разряд большими токами, но за меньший отрезок времени.
Пересчет значения тока стартерного разряда по европейскому стандарту DIN в ток холодной прокрутки по американскому стандарту SAE может производиться с помощью экспериментальных коэффициентов. Для батарей ёмкостью до 90Ач используется коэффициент 1.7, т. е. ISAE = 1.7 IDIN. Для батарей ёмкостью от 90 до 200 Ач используется коэффициент 1.6, т. е. ISAE = 1.6 IDIN.
В настоящее время в Европе наряду с немецким стандартом DIN введен новый единый стандарт En — 60095-1/93.
Кроме того, на необслуживаемых батареях проставляется соответствующая надпись. Чаще всего на русском, английском или немецком языке (либо на языке производителя, как например, на испанских батареях «Tudor»).

5. Выбор и покупка АКБ

Убедитесь, что выбираемая батарея соответствует конструктивным особенностям вашего автомобиля (ёмкость, место установки, способ крепления, полярность, форма и размер токосъемных выводов). Специализированные торговые фирмы имеют каталоги всего ассортимента, в которых систематизирована информация о модификациях и технических характеристиках.

Нецелесообразно на автомобиль с устаревшей системой электрооборудования устанавливать батарею, исключающую долив воды. Это приведет к сокращению ее срока службы или отказу.

Емкость батареи не должна существенно отличаться от указанной заводом-изготовителем автомобиля. Несоблюдение этого условия приводит к резкому сокращению службы, как батареи, так и стартера.

Очень неплохо знать рекомендуемую величину пускового тока для Вашего автомобиля. На многих (японских) автомобилях устанавливаются стартёры с редуктором. Это позволяет существенно уменьшить величину пускового тока, а значит существенно продлить жизнь Вашего аккумулятора.

Внимательно изучите текст гарантийного талона. Обратите особое внимание на те разделы, где перечислены: случаи, исключающие гарантийное обслуживание; адреса гарантийных мастерских; условия эксплуатации.

Маркировка аккумулятора должна иметь ссылку на стандарт (DIN, SAE, En или другие). В маркировке по стандарту SAE не указывается значение ёмкости в ампер-часах (Ач). Указание ёмкости в Ач в стандарте SAE – косвенный признак подделки. Наиболее подвержены подделкам дорогие аккумуляторы известных фирм-изготовителей, поэтому приобретать их лучше в торговых фирмах, заслуживающих доверие.

Большинство фирм-изготовителей кодирует дату выпуска АКБ. Современные необслуживаемые батареи допускают достаточно длительное хранение без существенной потери своих потребительских свойств, поэтому дата изготовления менее актуальна. Предпочтительнее приобретать залитый качественным заводским электролитом аккумулятор. Он готов к работе, легко поддается проверке. Не залитый сухозаряженный аккумулятор требует дополнительного времени и затрат на подготовку к эксплуатации.

Не спешите отдать деньги! Вы вправе требовать проверки аккумулятора. Первым делом сдерите с него защитную упаковочную пленку, какой бы красивой она ни была, и убедитесь, что корпус не поврежден – такое случается довольно часто. Затем попросите продавца измерить плотность электролита – она не должна быть ниже номинальной более чем на 0,02 г/см3 и одинаковой во всех банках, что соответствует примерно 80-процентной заряженности батареи. Последнюю проверку следует провести с нагрузочной вилкой – ее вольтметр должен показать 12.5–12.9 В при отключенной нагрузке, а при включенной – не опускаться в течение 10 секунд ниже 11В.

В случае отклонения от этих значений, батарея может оказаться частично или полностью непригодной к эксплуатации.

Если вам отказывают в проверке аккумулятора, не могут подтвердить качество товара сертификатом, гарантийным талоном, то лучше отказаться от покупки.

6. Установка АКБ

Перед установкой батареи обязательно полностью удалите с нее полиэтиленовую пленку. Газоотводные отверстия должны быть открытыми. Обратите внимание на правильность подключения. Клеммы АКБ рекомендуется зачистить и после закрепления смазать Литолом-24. Это делается для предохранения контактов от попадания влаги и окисления места контактов. Особенно это касается силовых проводов с медными (а не свинцовыми) наконечниками.

Очень важно уделить внимание проводам. Клеммы необходимо зачистить не только со стороны аккумулятора, но и с другой стороны. Место, куда крепится массовый провод (-) надо тоже тщательно зачистить от краски, масла и прочей грязи. Контакт затянуть туго. Это же касается клеммы на стартёре. Невнимание к проводам и контактам может очень сильно «выйти боком» зимой на морозе.

Батарея должна стоять на своём месте жёстко. Болтание её в крепёжных элементах недопустимо. Дополнительная вибрация скажется на долговечности батареи. Замыкание и осыпание пластин в банках чаще всего происходят именно из-за вибрации.

Обратите внимание, что на многих автомобилях батарея стоит довольно близко к выпускному коллектору. То есть летом ей будет довольно жарко, а это для батареи очень плохо! На «правильных» машинах предусмотрена термоизоляция АКБ от двигателя.

7. Рекомендации по эксплуатации и обслуживанию

Условия эксплуатации оказывают существенное влияние на срок службы аккумуляторной батареи. Частые запуски двигателя и поездки на короткие расстояния, неисправности электрооборудования (стартер, генератор, реле-регулятор), дополнительные потребители электроэнергии, несвоевременное обслуживание, ненадежное крепление батареи способны сильно сократить срок ее службы.

При продолжительном движении по трассе батарея может перезаряжаться (кипеть) — в городе с малыми пробегами и «пробками» она, как правило, разряжается (см. выше).

Генератор (при холостых оборотах двигателя) не обеспечивает работу большинства штатных потребителей, не говоря о дополнительных. Зимой ситуация усугубляется. К включенным габаритным огням, ближнему свету фар, стоп-сигналам, указателям поворота, аудиоаппаратуре добавляются обогрев заднего стекла и вентилятор отопителя. Ежедневный недозаряд батареи постепенно уменьшает ее ёмкость, что в итоге приводит к невозможности запуска двигателя стартером.

Отказ аккумуляторной батареи может быть вызван и током утечки в электрооборудовании автомобиля. Это происходит, когда при отключении всех потребителей один или часть из них остается включенным в электрическую цепь (неисправны выключатель или реле). Виновником может быть и сигнализация. После глубокого разряда АКБ может не восстановить свою первоначальную номинальную ёмкость. Батарея не сможет нормально работать, если для запуска двигателя требуется продолжительное включение стартера (неисправны системы питания, зажигания).

7.1. Обслуживание АКБ в процессе эксплуатации сводится к проверке и приведению в соответствие с требованиями: уровня и плотности электролита; чистоты и надежности крепления электрических соединений батареи с корпусом автомобиля, параметров электрооборудования, крепления батареи. Необходимо также следить за правильным натяжением ремня генератора, очищать и смазывать выводы и клеммы, содержать батарею в чистоте. Протирайте верхнюю поверхность водным раствором питьевой соды. Доведение плотности электролита до требуемой производится путем заряда батареи от стационарного зарядного устройства.

Значение зарядного тока в амперах (А) не должно превышать 1/10 ёмкости батареи (упрощенно).

7.2. Продление жизни новой батарее

Коротко об этом сказать трудно. В первую очередь, следует залить электролит, точно соответствующий не только климатической зоне, но и сезону эксплуатации. Если батарея будет работать только в теплое время года, то плотность электролита может быть 1.20 г/см3, а если до -15°С — 1.24 г/см3 и т.д. Такая точность, безусловно, снизит скорость сульфатации пластин, следовательно, увеличит долговечность батареи.

На срок службы АКБ значительно влияет средняя степень заряженности, которая зависит от исправности реле-регулятора. Необходимо, чтобы эта величина поддерживалась не ниже 75%.

справка:

Установлено, что отклонение регулируемого напряжения на 10…12% вверх или вниз от оптимального сокращает срок службы батареи в 2…2.5 раза.

Во-первых, отрегулируйте двигатель так, чтобы он легко заводился с пол-оборота. Это предохранит АКБ от глубокого разряда. При пуске двигателя стартером через аккумуляторную батарею проходит ток в несколько сот Ампер, что не способствует ее долговечности. Поэтому, чем легче пуск двигателя, тем лучше для АКБ: она прослужит дольше.

справка:

Сокращение времени работы стартера вдвое при шести-восьми ежедневных пусках повышает срок службы аккумуляторной батареи приблизительно в 1.5 раза.

Во-вторых, отрегулируйте при необходимости реле-регулятор, чтобы напряжение было в пределах 13.8…14.4В. Это одно из важнейших условий. В-третьих, никогда не позволяйте снизиться уровню электролита в банках ниже требуемого.

справка:

Несвоевременная доливка в аккумуляторы дистиллированной воды может снизить срок службы батареи на 30%.

Эти простые советы, продлят жизнь АКБ.

Кроме этого, специалисты советуют при наличии зарядного устройства при любой возможности (например, на ночь) ставить аккумуляторную батарею на подзарядку малым током — около 1…2А. Для этого можно АКБ не снимать с автомобиля. Только эта операция, если ее проделывать регулярно, не реже одного раза в месяц, увеличивает срок службы батареи, по крайней мере, на год.

7.3. Зарядка аккумулятора зарядным устройством

Ну а теперь как заряжать? Зарядные устройства бывают с ручной и автоматической регулировкой (Орион PW-270, Орион PW-320) или автоматические (все остальные зарядные устройства Орион). Перед зарядкой необходимо открыть все газовые каналы: вывернуть пробки, снять крышки банок.

При зарядке важны три параметра: напряжение, ток зарядки и время. Когда аккумулятор частично процентов на 25 разряжен, то начальный ток заряда при включении выпрямителя может резко скакнуть вверх. Отрегулируйте его на зарядный ток около 1/10 ёмкости аккумулятора или меньше (это общепринятое правило заряда кислотных батарей). Т.е., если у Вас батарея имеет маркировку 55Ah — выставляем ток около 5.5А.

Если необходимо зарядить батарею в кратчайшее время, можно выставить и больший ток. В соответствии с законом Вудбриджа который гласит: сила зарядного тока (в амперах) не должна превышать величину заряда (в ампер-часах), недостающего до полной ёмкости акуммулятора. При этом зарядное устройство должно автоматически снижать ток при повышении напряжения или выключаться при достижении порогового напряжения на батарее. В противном случае (если ЗУ этого не делает) необходимо непрерывно контролировать зарядный ток и напряжение в ручную.

Далее в процессе зарядки напряжение будет расти, а ток уменьшаться. Считается, если ток не уменьшается в течение последних 2-3 часов, то аккумулятор заряжен. Важно помнить, что нельзя вести заряд большим током более 25 часов. Электролит сильно нагреется и выкипит, пластины от нагрева может повести и они замкнут друг на друга. Обычно нормальное время полного заряда около 15 часов.

Иногда необходимо выровнять плотность небольшим током. Например, если плотность электролита в разных банках 1.23, 1.25. Включив зарядное устройство, устанавливаем ток зарядки порядка 1-2А. Данное значение у разных АКБ- разное и зависит от многих факторов: конструкции, пассивационного материала пластин, состояния батареи и т.д. Время такой зарядки до двух суток. Особенно это необходимо делать после того, как аккумулятор разряжен в ноль бесплодными попытками завести двигатель. При чём, делать это надо сразу, пока не началась сульфатация пластин.

Батареи, исключающие долив воды, должны заряжаться только устройствами с автоматическим поддержанием зарядного напряжения. Несоблюдение этого условия приведет к снижению их срока службы. Конкретные требования по режиму заряда, эксплуатации и обслуживанию должны быть изложены в инструкции или гарантийном талоне, прилагаемом к батареям.

В настоящее время разные производители обозначают разное напряжение окончания заряда. Как правило, оно составляет от 15 до 16В (для батарей устаревших конструкций, с применением в качестве пассивирующего материала сурьмы — меньше). На самом деле, порог ограничения напряжения автоматического зарядного устройства 15 или 16 вольт (для батареи с прописанными, для полного заряда, 16ю вольтами, например Varta) влияет только на время заряда последних 2-4% емкости.

Для доведения уровня электролита до нормы недопустимо использовать электролит! В аккумуляторную батарею доливают только дистиллированную воду. Не используйте воду сомнительного происхождения. При частом выкипании проверьте электрооборудование автомобиля.

Необходимо знать, что при сильном снижении уровня электролита внутри корпуса аккумулятора может образоваться опасная концентрация газовой смеси. Чтобы исключить вероятность взрыва, нельзя подносить к батарее открытое пламя (даже сигарету) и допускать искрение электроконтактов. Системы газоотвода некоторых современных батарей более взрывобезопасны. В средней полосе России АКБ не требуют корректировки плотности электролита при смене сезонов.

Перед зимней эксплуатацией автомобиля сделайте обслуживание не только аккумуляторной батареи (см. выше), но и систем, влияющих на запуск двигателя. Обязательно залейте моторное масло, соответствующее сезону. Для облегчения запуска двигателя в сильные морозы занесите батарею на несколько часов в теплое помещение.

Перед длительной зимней стоянкой также обслужите батарею, но не храните ее в теплом помещении, а оставьте на автомобиле со снятыми клеммами. Чем ниже температура, тем меньше скорость ее саморазряда.

Недопустимо оставлять на морозе разряженную батарею. Электролит низкой плотности замерзнет, и кристаллы льда приведут ее в негодность. Плотность электролита разряженного аккумулятора может снизиться до 1,09 г/см3, что приведет к его замерзанию уже при температуре -7°С. Для сравнения – электролит плотностью 1.28 г/см3 замерзает при t=-65°С.

Опрокидывание аккумуляторной батареи и слив электролита могут привести к замыканию пластин и выходу ее из строя.

Для борьбы с паразитными токами утечки введите себе привычку вытирать корпус батареи насухо от всякой нечисти. Если совсем в лом, то хотя бы делайте чистый круг вокруг плюсовой клеммы, чтобы разорвать паразитные электрические связи. Ну, а если Вы любите свою машину, то разведите немного соды в воде и протрите всю поверхность корпуса батареи и вытрете ее насухо. Все тряпки, которые прикасались к аккумулятору выбросить немедленно! А заодно проверите крепление батареи, уровень электролита и его плотность. Времени это займёт минут 10-15, а сэкономить может часы и кучу нервов.

8. Особенности эксплуатации АКБ в зимний период

Перво-наперво замерим плотность электролита во всех банках без исключения. Норма 1.27-1.28 г/см3. У Вас далеко не так? Значит, снимаем батарею и ставим на зарядку. И это однозначно! Ни в коем случае не пытаемся повысить плотность электролита добавлением концентрированной кислоты, какая бы низкая не была его плотность. Желаемого же результата — повышения ёмкости батареи при этом не произойдет.

Далее. Обязательно провести ревизию всех силовых проводов, клемм и контактов. Клеммы зачистить мелкой шкуркой. Контакты на АКБ тоже зачистить и затянуть. Можно затем смазать литолом, чтобы к контактам не попадала влага. С другой стороны силовых проводов так же провести ревизию контактов.

8.1. Прикуривание от другого автомобиля

Для российских автовладельцев нормальная ситуация, когда сосед просит «прикурить» его аккумулятор. Для этой нехитрой процедуры помимо автомобиля с заряженным аккумулятором, необходимы ещё и правильные провода. Не забываем, что по этим проводам у нас потечёт около 200 ампер!

На что нужно обратить внимание при покупке:
1. Толщина жилы медного провода. Сняв изоляцию с крокодила (зажима) можно увидеть саму жилу. Чем толще, тем лучше. Не обращайте внимание на толщину кабеля. Главное проводник тока, а не толщина изоляции.
2. Надежность крепления жилы к крокодилу провода прикуривателя. Медная жила д.б. облужена, затем обжата и припаяна. Если эти условия соблюдены, то потерь в месте соединения будет меньше. Все стартовые провода Орион 100% паяются.
3. Изоляция. Лучший вариант — морозоустойчивая резина или силикон. Зимой такие провода остануться эластичными.
4. Длинна проводов. Провода по длинне нужно выбирать не длинее, чем нужно.
5. Крокодилы (зажимы). При покупке обращайте внимание на толщину стали из которой они сделаны и силу пружины, а не габаритные размеры.
Чтобы не навредить сложным электронным системам вашей собственной машины, эта, казалось бы, элементарная процедура требует соблюдения строгой последовательности действий.
1. Соедините красный кабель с клеммой (+) на заряженном аккумуляторе.
2. Соедините другой конец красного кабеля с клеммой (+) на «севшем» аккумуляторе.
3. Соедините черный кабель с клеммой (-) на заряженном аккумуляторе.
4. Соедините другой конец черного кабеля с чистой точкой заземления на блоке двигателя или на шасси, главное — подальше от аккумулятора, карбюратора, топливных шлангов и т.п. В момент подсоединения будьте готовы к небольшой искре.
5. Следите, чтобы оба кабеля не касались движущихся деталей.
6. Попробуйте запустить автомобиль с «севшим» аккумулятором. Если двигатель не заведется, подождите несколько минут и повторите попытку. Если же заведется, дайте ему поработать несколько минут в таком положении. Если не заведется повторите попытку через 2-3 минуты.
7. При отсоединении кабеля следуйте описанной выше процедуре в обратной последовательности.

8.2 Запуск машины при помощи предпускового зарядного устройства Вымпел. Подключаете устройство, выставляете максимальный ток 18А, оживляете акумулятор в течении 10-15 мин. Затем не отключая зарядного устройства пробуете завести. Если не получилось повторяете попытку заново.

9. Особенности эксплуатации АКБ в летний период

Не удивляйтесь, если однажды вам будет трудно или вообще не завести машину в жаркую погоду. Теплое время года — такое же испытание, как и холод. Тепло ускоряет химические процессы. Неисправности и дефекты электрической системы автомобиля или аккумулятора незамедлительно скажутся на состоянии батареи. Но, скорее всего, узнаете вы об этом в самый неподходящий момент. Например, ночью во время дождя, когда придется включить освещение, вентиляцию и стеклоочистители. Поэтому не расслабляйтесь. Лето — самый подходящий период для покупки нового аккумулятора.

Летом автомобилист не сразу заметит, что в аккумуляторе плотность электролита и его уровень в банках недостаточные. Но чем выше температура окружающей среды, тем активнее электрохимические процессы. В результате электролиза кислород вступает во взаимодействие с пластинами, а ставший свободным водород испаряется. Таким образом, из электролита исчезает вода. Как только уровень раствора оказывается ниже уровня пластин, начинается сульфатация пластин (сульфат свинца растворяется в электролите, а затем оседает на поверхности пластин уже в виде крупных нерастворимых кристаллов и происходит изоляция пластин от электролита). Емкость батареи уменьшается. Электрохимические реакции останавливаются. Аккумулятор выходит из строя.

Имейте в виду, что во время длительного хранения аккумулятора происходит саморазряд (снижение ёмкости). Оставлять батарею в разряженном состоянии не рекомендуется: в этом случае вода испаряется, и открываются пластины. А дальше все, как описано выше.

Саморазряд увеличивается от высокой температуры, грязи и электролита (воды) на крышке батареи. Еще одна причина возникновения паразитных токов — неодинаковая плотность электролита в разных банках и на разных уровнях. Это может произойти после доливки большого количества воды. Чтобы избежать неприятностей, зарядите аккумулятор или проедьте на машине, чтобы плотность раствора сравнялась. Есть еще один совет: доливайте дистиллированную воду в аккумулятор при работающем двигателе. Это обеспечит ее перемешивание с кислотой.

Ускорение электролиза способствует уплотнению активной массы. Этой “болезнью” страдают отрицательные пластины, активная масса которых во время эксплуатации постепенно уплотняется, а ее пористость уменьшается. Доступ электролита внутрь отрицательных пластин затрудняется, что снижает ёмкость батареи. К тому же уплотнение активной массы может сопровождаться образованием трещин и отслаиванием.

Пластины коробятся при увеличении силы зарядного тока, при коротком замыкании, понижении уровня электролита, частом и продолжительном включении стартера, когда батарея нагружается разрядным током большой силы. Чаще короблению подвержены положительные пластины, при этом в их активной массе образуются трещины, и она (активная масса) начинает выпадать из решеток.

Причиной выпадения активной массы из решеток пластин может стать длительная перезарядка, плохое крепление пластин, вибрация и т.д. Осыпающийся активный слой в конце-концов замыкает пластины, сокращает мощность и срок службы. В современных аккумуляторах пластины помещаются в конверт-сепараторы; осадок выпадает, но короткого замыкания удается избежать.

Летом вентиляционные отверстия забиваются пылью. Чтобы батарея не лопнула и не взорвалась следите за чистотой аккумулятора. Пробки заливных отверстий должны быть плотно закрыты.

Как сохранить свой аккумулятор летом?

Во-первых, следите за уровнем электролита и регулярно доливайте дистиллированную воду. Во-вторых, не оставляйте батарею незаряженной. В-третьих, следите за чистотой корпуса. В-четвертых, следите за состоянием электрической системы автомобиля. Неисправный стартер и генератор совершенно незаметно “подготовят” батарею к зиме и с первыми морозами она откажет.

Если вы планируете заменить аккумулятор, лучше не ждать до осени. В сезон выбор значительно меньше, цены выше, а желающих больше. В любом случае потребуется помощь подготовленного продавца-консультанта. Летом он сможет больше уделить вам времени.

10. Вопросы безопасности

Помните, что опасность возгорания кислорода и водорода, выделяющихся во время зарядки (а также после ее завершения), вполне реальна.

Хотя большинство серьезных производителей оборудуют крышки аккумуляторов ограничителями пламени, призванными предотвратить его попадание внутрь аккумулятора, подобная вероятность по-прежнему сохраняется.

Помните также, что искра возникает не только при отсоединении клеммы. Статического электричества от синтетической одежды может оказаться достаточно, чтобы вызвать взрыв.

Взрыв аккумулятора можно сравнить по мощности с выстрелом из ружья калибра 12мм. Результат представляет собой жуткое зрелище, и происходит это чаще, чем вы можете себе представить. При том, что взрыв, вероятно, не будет смертельным, он может серьезно травмировать вас, особенно лицо, так как осколки пластика разлетаются во все стороны. Поэтому всегда следует быть в защитных очках.

Если вдруг позарез понадобилось отсоединить аккумулятор на машине с работающим мотором (лучше, конечно, не подвергать свой автомобиль таким испытаниям), прежде надо включить как можно больше потребителей электроэнергии: печку, фары, противотуманки, «дворники». Если этого не сделать, то может сгореть регулятор напряжения, а следом откажет электрооборудование и в том числе — системы управления двигателем. А для начала загляните в инструкции: позволяет ли она вообще производить такую операцию. Ведь на автомобилях некоторых марок, напичканных современной аппаратурой, любое отключение аккумулятора выводит из строя сложные электронные системы.

11. Хранение аккумуляторной батареи

1.снимите аккумулятор с машины (оставьте на машине со снятыми клеммами), очистите от грязи, полностью зарядите.

2.при отсутствии возможности подзарядки во время хранения АКБ можно рекомендовать следующий способ. Электролит в аккумуляторе необходимо заменить 5-процентным раствором борной кислоты. Перед заменой электролита АКБ полностью заряжают, а затем сливают электролит в течение 15 минут. Затем ее сразу же промывают дважды дистиллированной водой, выдерживая воду по 20 минут. После промывки наливают раствор борной кислоты, заворачивают пробки с открытыми вентиляционными отверстиями, вытирают батарею и ставят на хранение. Саморазряд аккумуляторов с раствором борной кислоты практически отсутствует.

Справка

Для приготовления 5-процентного раствора борной кислоты необходимо в 1 литре дистиллированной воды, нагретой до 50…60°С, растворить 50г борной кислоты. Раствор заливают в аккумуляторы при температуре 20…30°С.

Хранить батарею надо при температуре не ниже 0°С, поскольку заливаемый 5-процентный раствор борной кислоты может замерзнуть. А для ввода такой батареи в действие из нее выливают раствор борной кислоты в течение 15…20 минут и сразу же заливают сернокислый электролит плотностью 1.38…1.40 г/см3 для нашей зоны. После 40-минутной пропитки пластин электролитом АКБ можно устанавливать на автомобиль, если плотность электролита не уменьшилась ниже 1.24…1.25 г/см3. Если она стала ниже, следует откорректировать плотность отбором слабого раствора и добавлением электролита плотностью 1.40 г/см

12. Приложения

12.1. Реанимация аккумулятора

Реанимация аккумулятора. Старый фирменный аккумулятор может послужить еще, если его правильно восстановить! Итак, начнём. Имеем на руках убитый или почти убитый аккумулятор.

Нам понадобятся некоторые материалы и инструменты:

1) Свежий электролит (номинальной + желательно повышенной плотности)

2) Дистиллированная вода.

3) Измеритель плотности электролита (ареометр). Например ареометр производства НПП «Орион CПб»

4) Зарядное устройство, способное обеспечить малые (0.05-0.4А) токи зарядки.
5) Маленькая клизма (простите, надо!) и пипетка для наливных целей.
6) Нагрузочная вилка. НПП «Орион СПб» производит 4 модели: от простых и дешевых НВ-01, НВ-02, до профессиональных НВ-03, НВ-04.

Для начала определимся с возможными неисправностями:
1) Засульфатированность пластин — ёмкость аккумулятора падает почти до нуля.
2) Разрушение угольных пластин — при зарядке электролит становится черным.
3) Замыкание пластин — электролит в одной из секций аккумулятора выкипает, секция греется. (Тяжелый случай, но иногда небезнадежный)
4) Перемёрзший аккумулятор — распухшие бока, электролит при заряде сразу вскипает (многочисленные замыкания пластин) — тут уж ничем не помочь, аминь, упокой Господь его душу!

Начнем с конца списка. (п.3) При замыкании пластин ни в коем случае не пытайтесь его заряжать! Начинаем промывку дистиллированной водой. Не бойтесь переворачивать и трясти аккумулятор, хуже уже не будет. Промывайте его до тех пор, пока не перестанет вымываться угольная крошка (надеюсь, этот момент наступит, иначе прекратите этот мазохизм). При промывке часто замыкание пластин устраняется, и мы переходим от пункта (3) к пункту (2). После промывки и вытряхивания всякого мусора из недр аккумулятора приступаем к пункту (1), а именно к устранению отложений солей на пластинах аккумулятора. Следуйте инструкциям к присадке. Мой опыт может отличаться от того, что вы прочтёте в инструкции. Далее я делаю так:

1) Заливаем аккумулятор электролитом номинальной плотности (1.28 г/см3).

2) Добавляем присадку, исходя из объёма аккумулятора (см. инструкцию)

3) Даём электролиту выдавить воздух из секций, а присадке — раствориться в течении 48 часов (!), при необходимости доливаем электролит до номинального уровня. Кстати, присадку можно растворить в электролите до заливки в аккумулятор, если, конечно, она хорошо растворяется.

4) Подключаем зарядное устройство (не забудьте снять пробки!). НО МЫ НЕ БУДЕМ ЕГО ЗАРЯЖАТЬ! НЕ СЕЙЧАС! Сначала мы будем гонять его по циклу «зарядка-разрядка», иначе «тренировка», то есть заряжать и разряжать его, пока не восстановится нормальная ёмкость. Выставляем ток зарядки в районе 0.1- 0.2 А и следим за напряжением на клеммах. Не давайте электролиту кипеть или нагреться! Если необходимо, уменьшите зарядный ток, пузырьки газа и перегрев разрушают аккумулятор! Заряжайте, пока напряжение на клеммах аккумулятора не достигнет 2.3 — 2.4В на каждую секцию, т.е. для 12-вольтового аккумулятора — 13.8-14.4 В.

5) Уменьшаем зарядный ток вдвое и продолжаем зарядку. Зарядку аккумулятора прекращаем, если в течении 2 часов плотность электролита и напряжение на клеммах остаются неизменными.

6) Доводим плотность до номинальной доливкой электролита повышенной плотности (1.4) или дистиллированной воды.

7) Разряжаем аккумулятор через лампочку током примерно в 0.5А до падения напряжения на клеммах до 1.7В на элемент. Для 12-вольтового аккумулятора эта величина составит 10.2В, для 6-вольтового 5.1 соответственно. Из имеющихся величин тока разряда и времени разряда вычисляем ёмкость нашего аккумулятора. Если она ниже номинальной (4 ампер-часа), то:
 Повторяем цикл заряда с начала до тех пор, пока ёмкость аккумулятора не приблизится к номинальной.

9) Добавляем в электролит ещё немного присадки и закрываем отверстия аккумулятора. ВСЁ!!! Мы имеем на руках рабочий аккумулятор, который, иногда способен проработать дольше китайского!

Дальше обращаемся с аккумулятором, как положено.

12.2. Ещё несколько способов, основанных на использовании электрического тока.

Способ первый — простой. Электролит заменить дистиллированной водой и зарядить аккумулятор или батарею очень небольшим (примерно 0.01 ёмкости) током. При этом в банках степень сульфатации снижается и образуется электролит, который заменять не нужно. После двух часов зарядки ее прекращают на такое же время. А затем снова повторяют.

Доказано, что после одного-трех таких циклов степень сульфатации резко снижается.

Второй способ — наиболее трудоемкий, но в безвыходном положении его тоже можно применить. Он химический, включает следующие операции: заряд батареи в течение 2…3 часов, слив электролита из банок, двух-трехкратная их промывка дистиллированной водой, заправка 2.5-процентным (25 г на 1 л) раствором питьевой соды и выдержка в течение 2…3 часов, слив раствора, заправка 2…3-процентным раствором повареной соли, заряд батареи в течение 1ч, слив раствора, промывка 4-процентным раствором питьевой соды, полный (из расчета 150-процентной ёмкости) заряд батареи, третья промывка банок, заправка их электролитом, полный (150-процентной ёмкости) заряд батареи.

Электролит: основа свинцово-кислотных автомобильных аккумуляторов

В качестве стартерных батарей в автотранспорте используются свинцово-кислотные аккумуляторы. Функционирование аккумулятора обеспечивается специальным раствором серной кислоты — электролитом. О том, что такое аккумуляторный электролит, каких типов он бывает, и как его использовать — читайте в статье.

Что такое электролит?

Аккумуляторный электролит — водный раствор серной кислоты, предназначенный для использования в свинцово-кислотных аккумуляторных батареях (АКБ). Электролит готовится путем растворения концентрированной серной кислоты в дистиллированной воде, молекулы кислоты в данном растворе диссоциируют (распадаются) на ионы — это явление наделяет электролит электропроводящими свойствами.

Аккумуляторный электролит имеет следующее назначение:

  • Изготовление аккумуляторных батарей;
  • Ввод в эксплуатацию сухозаряженных батарей;
  • Восстановление АКБ при загрязнении или утечке электролита, коротких замыканиях между пластинами и других неисправностях.

Но прежде, чем применять электролит для той или иной цели, необходимо разобраться в его характеристиках и особенностях применения.

Зачем в аккумуляторе электролит?

Электролит, свинцовые пластины и пористый диоксид свинца (PbO2) — три основных компонента свинцово-кислотного аккумулятора. Именно в присутствии кислотного электролита протекают электрохимические реакции, делающие возможным накопление и отдачу аккумулятором электрического заряда.

Во время разряда АКБ металлический свинец и оксид свинца вступают в реакцию с серной кислотой (точнее — с ее отрицательными ионами SO4 и положительными ионами H), образуя сульфат свинца (PbSO4) и воду, при этом на анодных пластинах выделяются избыточные электроны. На катодных пластинах, напротив, наблюдается недостаток электронов, благодаря этому при замыкании анода и катода между ними возникает электрический ток. Во время заряда АКБ проходят обратные реакции — под действием тока от стороннего источника из сульфата свинца образуются чистый свинец, диоксид свинца и кислота.

В ходе данных реакций количество серной кислоты и воды в электролите изменяется, что приводит к изменению его плотности и объема. При разряде АКБ концентрация кислоты понижается, а концентрация воды немного увеличивается, что приводит к падению плотности и к некоторому увеличению объема электролита. В процессе заряда плотность повышается, а объем несколько понижается.

Типы и характеристики электролитов

Электролит изготавливается смешиванием концентрированной серной кислоты и дистиллированной воды в строго определенных пропорциях. Для изготовления электролита используется специальная аккумуляторная серная кислота (по ГОСТ 667-73) и дистиллированная вода (по ГОСТ 6709-72). Данный раствор используется во всех типах современных свинцово-кислотных аккумуляторов.

Главная характеристика электролита — плотность. Для нормальной работы АКБ плотность электролита должна лежать в пределах 1,23-1,4 г/куб. см, так как именно при такой плотности раствор имеет максимальную электропроводность. Однако плотность концентрированной серной кислоты составляет 1,83 г/куб. см, поэтому для достижения необходимой плотности кислота смешивается с водой.

Плотность электролита в значительной степени зависит от двух параметров: температуры и степени заряда аккумулятора.

О зависимости плотности электролита в зависимости от заряда АКБ мы сказали выше: при заряде плотность повышается, при разряде — понижается. Зависимость плотности электролита от температуры простая: при снижении температуры плотность падает, при повышении — возрастает. Поэтому нормальная плотность определяет при температуре +25°C, а чтобы верно измерять плотность при любой температуре, используют таблицу поправок к показаниям ареометра:


Температура электролита,
°C
Поправка к показаниям ареометра,
г/куб. см
-55 … -41-0,05
-40 … -26-0,04
-25 … -11-0,03
-10 … +4-0,02
+5 … +19-0,01
+20 … +300
+31 … +45+0,01
+46 … +60+0,02

Например, если электролит при температуре +25°C имеет плотность 1,28 г/куб. см, то при температуре -15°C он имеет плотность 1,25 г/куб. см, а при нагреве до +50°C (что часто бывает в подкапотном пространстве автомобиля) плотность повышается до 1,3 г/куб. см.

Чтобы компенсировать изменение плотности электролита в АКБ транспортных средств, эксплуатируемых в различных климатических поясах, применяются электролиты большей или меньшей плотности:

  • Летние и для жаркого климата — плотностью 1,23-1,24 г/куб.см;
  • Для умеренного и холодного климата — 1,27-1,28 г/куб.см;
  • Зимние и для холодного климата — 1,3-1,34 г/куб.см.

Кроме того, при повышении плотности электролита повышается его морозоустойчивость — более плотные электролиты устойчивы к замерзанию, поэтому они лучше подходят для эксплуатации в холодное время года и в холодных климатических поясах.

Сегодня можно купить электролит необходимой плотности, освободив себя от непростой процедуры приготовления правильного по характеристикам электролита из кислоты и воды. Электролит продается в тарах емкостью от 1 до 20 литров, поэтому всегда можно приобрести нужный для работы объем.

Использование аккумуляторного электролита

Сразу нужно отметить, что электролит не используется для текущего обслуживания аккумулятора. Наиболее часто в АКБ снижается уровень электролита и падает его уровень, в этом случае обслуживание выполняется добавлением воды. Дело в том, что в процессе работы аккумулятора из электролита испаряется вода, а кислота остается на месте. Также потеря воды может возникать в случае перезаряда аккумулятора — при достижении определенной плотности концентрация серной кислоты в электролите снижается и ее уже не хватает для нормального протекания указанных выше электролитических реакций. В этих условиях начинается процесс электрохимического разложения воды на водород и кислород — это проявляется «кипением» электролита, а образовавшиеся газы улетучиваются. В обоих случаях — при испарении и разложении воды — плотность электролита повышается, для ее восстановления необходимо использовать воду.

Наиболее часто электролит применяется для восстановления работы аккумулятора в случае замерзания электролита с последующей потерей его характеристик. Если электролит в АКБ замерз, то, прежде всего, необходимо занести его в теплое помещение и дождаться оттаивания. После этого аккумулятор следует поставить на зарядку с малым током — рекомендуется ток около 1 ампера и срок зарядки до 2 суток. В ходе зарядки нужно измерять плотность электролита, если она начнет повышаться, то его можно нормально зарядить и эксплуатировать.

Если же ни при каких условиях плотность не повышается, то следует произвести замену электролита. Это выполняется следующим образом:

  1. Слить электролит из всех банок батареи;
  2. Промыть банки дистиллированной водой;
  3. Добавить новый электролит до указанного уровня;
  4. Оставить аккумулятор на 2-3 часа для пропитки пластин электролитов;
  5. Зарядить АКБ малым током 0,5-1 ампер в течение 2 суток.

Зарядку следует остановить, когда плотность электролита и напряжение на клеммах будут стабильными в течение хотя бы двух часов.

Но если замерзание аккумулятора вызвало деформацию или разрушение пластин, то менять электролит уже бесполезно — нужно покупать новую батарею.

Аналогично устраняются и другие проблемы с аккумулятором — утечка или загрязнение электролита, ремонт АКБ после короткого замыкания и т.д. Но в этих случаях прежде нужно проверить аккумулятор на целостность и ремонтопригодность, при обнаружении трещин и других физических повреждений батарея ремонту не подлежит, ее нужно утилизировать.

Особый случай — ввод в эксплуатацию сухозаряженных аккумуляторов, которые поставляются без электролита. Обычно для подготовки такого аккумулятора его нужно заполнить электролитом и дождаться достижения необходимой плотности — все эти действия обязательно прописаны в инструкции к аккумулятору. Предварительную зарядку сухозаряженного АКБ проводить не нужно!

Во всех случаях необходимо правильно рассчитывать объем электролита, чтобы сделать правильную покупку. Объем электролита в АКБ зависит от его напряжения и электрической емкости. Наиболее распространенные 12-вольтовые аккумуляторные батареи емкостью 55-60 А·ч вмещают 2,5-3 литра, емкостью 75-90 А·ч — от 3,5 до 5 литров. Большие 24-вольтовые АКБ емкостью свыше 100 А·ч могут содержать 10 и более литров электролита. При покупке рекомендуется брать электролит с небольшим запасом, так как в процессе работы возможны непредвиденные потери и утечки.

Оптимальная плотность электролита! | Статьи компании ООО «KRONVUZ» г Москва


Мы часто сталкиваемся с вопросом об эксплуатации автомобильных аккумуляторов, число автовладельцев возрастает, и, конечно, весь круг автолюбителей знает, что аккумулятор не работает без электролита.
Плотность данного вещества зависит от многих факторов, но принято считать, что оптимальная плотность электролита составляет 1,26 г/см3.


По плотности электролита можно установить, в каком состоянии находится батарея. В том случае, когда АКБ плохо держит заряд, нужно проверить концентрацию жидкости внутри нее. Когда батарея находится в рабочем состоянии, вода постепенно испаряется, что способствует большей концентрации электролита, а это оказывает отрицательное влияние на состояние аккумуляторной батареи.


Отрицательно влияет на АКБ как повышенная, так и пониженная плотность электролита. Излишняя плотность активирует химические процессы, протекающие в батарее постоянно. Из этого следует быстрое разрушение пластин и снижение срока службы аккумулятора.


Единой рекомендации оптимальной плотности электролита не существует, потому что его плотность зависит от критических значений температуры в определенных регионах, для каждого из которых есть свое собственное значение.

  • В условиях Крайнего Севера плотность электролита должна составлять не менее 1,29 г/см3;
  • Для большей части территории РФ приемлем показатель 1,26– 1,27 г/см3;
  • В теплых районах нормальная плотность составляет 1,23–1,25 г/см3;
  • Минимальным значением является показатель 1,23 г/см3.


Опираясь на эту статистику, можно расценивать показатель 1,26 г/см3 как оптимальный. При заливке электролита готовить раствор рекомендуется, опираясь на минимальный показатель данных диапазонов, а для щелочного аккумулятора плотность содержимого должна составлять около 1,2 г/см3.


Прибор для измерения плотности электролита называется денсиметр. Выполнить проверку плотности можно и с помощью вольтметра.


К каждой АКБ прилагается инструкция по эксплуатации, в которой описаны материалы АКБ, технология изготовления АКБ, а также, к какой категории относится данная АКБ.


Аккумуляторные батареи бывают обслуживаемыми, малообслуживаемыми (на протяжении длительного времени не требующие доливки воды) и необслуживаемые.


К сожалению, не всегда удается уследить за состоянием акб и вовремя его обслуживать. Если жидкость в аккумуляторе поменяла цвет, это значит, что упала плотность и необходимо слить и заменить электролит.


Более подробно узнать информацию об электролите и его замене можно в статье «Замена электролита в аккумуляторе».


Наша компания производит целый ряд устройств для обслуживания аккумуляторных батарей и контроля электролита. Вся продукция производства предприятия «KRONVUZ» выполнена по высоким технологиям, что способствует бесперебойной эксплуатации длительное время.


Рекомендуем ознакомиться со следующими материалами:

Плотность электролита в аккумуляторе — какая должна быть, проверка, как повысить

Свинцово-кислотным аккумуляторам уже более полутора столетий, но позиции в автомобилестроении они не сдают и по сей день. Главных причин тому две: низкая себестоимость и морозоустойчивость. Литий-ионный аккумулятор, пускай он и  гораздо компактнее и легче при сопоставимой с свинцово-кислотным емкости, но стоит в разы дороже и уже при 0° С его емкость упадет вдвое (в то время как у свинцовой батареи это произойдет только при -30° С). И это не говоря уже о гораздо большей требовательности к условиям заряда и разряда.

Необслуживаемые кальциевые и AGM-аккумуляторы завоевывают все большую популярность, но  АКБ традиционной конструкции с возможностью обслуживания все так же можно увидеть под капотом автомобиля. Контроль уровня и состояния электролита  увеличивает ресурс аккумулятора, а самое главное – страхует от проблем зимой, что «рукастому» владельцу только в плюс.

Принцип действия аккумулятора

Говоря о плотности аккумуляторного электролита, нужно начать с самого принципа работы автомобильных аккумуляторов. Во время заряда-разряда в аккумуляторе протекают около 60 реакций, как утверждают исследования еще советских времен,но основной из них является только одна: в процессе разряда оксид свинца на катоде (отрицательном электроде) и свинец на аноде (положительном электроде) «забирают» сульфат-ионы из раствора серной кислоты, превращаясь в сульфат свинца, причем на катоде дополнительно образуется вода, а при заряде сульфат свинца, напротив, «отдает» сульфат-ионы в электролит.

Таким образом, во время разряда плотность электролита падает, при полном разряде между пластинами фактически остается дистиллированная вода, а во время заряда она возрастает. Тогда почему падает плотность раствора в аккумуляторе со временем, если эти процессы зеркальны?

Причина в том, что сульфат свинца, образующийся при разряде аккумуляторной батареи, не всегда полностью расходуется в ходе заряда. Особенно это заметно на морозе и после длительного пребывания батареи в разряженном состоянии: пластины покрываются сначала белыми разводами крупнокристаллического сульфата свинца, а затем эти кристаллы постепенно осыпаются вниз и в дальнейшей реакции, проходящей при зарядке, практически не участвуют.

Поэтому сульфатация пластин аккумулятора является однозначно вредным явлением. Снижается емкость аккумулятора, прочность пластин, а из-за падения плотности электролита батарея хуже набирает заряд: чем ниже плотность раствора, тем хуже проводимость. Полностью разряженный аккумулятор практически не принимает заряд – сопротивление электролита между его пластинами слишком велико.

Однако плотность может со временем и вырастать. Так как электролит – это не чистая серная кислота, а ее водный раствор, то при зарядке АКБ протекает еще одна реакция: банальный электролиз воды, малозаметный в начале цикла, но к концу идущий по нарастающей. Поэтому старые рекомендации по заряду обслуживаемых АКБ советовали дождаться «кипения» аккумулятора – резкого роста выделения кислорода и водорода в банках. Теряя воду, со временем электролит снизит свой уровень, а плотность его неизбежно возрастет – даже с учетом постепенного связывания серной кислоты на пластинах и в осыпи вода при «кипении» теряется быстрее.

Нормальная плотность электролита

Чистая серная кислота в аккумуляторах не используется – это чрезмерно опасно, значительно возрастает скорость сульфатации пластин даже при нормальной эксплуатации. Из эксплуатационных соображений плотность электролита аккумулятора выбрана такой, чтобы обеспечить возможность уверенной работы при отрицательных температурах, достаточную удельную емкость и скорость заряда.

При нормальных условиях (под которыми в физике принято понимать, среди прочего, температуру +20° С) плотность электролита в полностью заряженном аккумуляторе составляет 1,28-1,3 г/см3. Как можно видеть на приведенной иллюстрации, именно такая плотность обеспечивает наибольшую морозоустойчивость. Заодно заметно, что у полностью разряженного аккумулятора риск замерзания зимой очень велик – достаточно температуре опуститься ниже -5, как в электролите образовываются кристаллики льда.

Зимняя и летняя плотность электролита

Однако на практике измерение плотности электролита в аккумуляторе при строго заданной температуре невозможно: зимой в гараже плотность у исправного и заряженного аккумулятора увеличится, а летом, да еще и сразу после поездки, напротив, будет ниже. Поэтому принята система поправок при измерениях в зависимости от температуры аккумулятора, которая отображена в таблице ниже.:

Температура электролита, °СПоправка, г/см3
От –40 до –26–0,04
От –25 до –11–0,03
От –10 до +4–0,02
От +5 до +19–0,01
От +20 до +300,00
От +31 до +450,01

Таким образом, если Вы измеряете плотность зимой во время легкого заморозка (до -10), то у заряженного аккумулятора она должна составлять 1,3-1,32 г/см3, так как с поправкой -0,02 мы и получим «стандартные» 1,28-1,3. На жаре же уже нормой плотности  будут 1,27-1,29 г/см3.

Ещё кое-что полезное для Вас:

Порядок измерения плотности аккумулятора

Для начала аккумулятор необходимо установить на ровную горизонтальную плоскость и очистить  крышку от пыли и грязи. Лучше для этого использовать ткань, смоченную слабым раствором соды, как самой доступной щелочи: она нейтрализует возможное отпотевание электролита вокруг пробок.

Теперь проверяем уровень электролита. Проще это сделать на аккумуляторах с полупрозрачными стенками – на стенках есть риски, с помощью которых можно сразу понять, находится ли уровень в пределах допустимого. Важна не только сама высота уровня, но и равномерность по банкам: там, где уровень электролита заметно меньше, возможна неисправность (негерметичность стенок или днища, быстрое «выкипание» электролита из-за его чрезмерной изначальной плотности и так далее). Если стенки у аккумулятора непрозрачные, воспользуйтесь прозрачной трубкой, опуская ее в отверстия пробок до упора в набор пластин и затыкая после этого верхний конец пальцем: вытащив трубку, Вы увидите, насколько электролит выше пластин. Нормой считается высота уровня в 10-15 мм над пластинами.

Если в какой-то банке уровень электролита ниже нормы, доведите его до нужного,  аккуратно доливая дистиллированную воду. Как мы уже писали выше, чаще всего уровень снижается из-за потери воды за счет электролиза, поэтому восполнять уровень готовым электролитом нельзя.

Перед проверкой плотности обеспечьте батарее состояние стопроцентной заряженности – подсоедините зарядное устройство до момента «кипения» или до его отключения, если используете автоматическую модель. Это нужно и для того, чтобы плотность в банке выровнялась после доливания дистиллированной воды, иначе измерение даст ошибочный результат.

Распространенный прибор для контроля плотности – это ареометр, представляющий собой прозрачную колбу с грушей для набора жидкости. Внутри этой колбы находится грузик с делениями – в набранный электролит он погрузится на высоту, зависящую от плотности аккумулятора, и риска, по которую он погрузится, и укажет на результат измерения.

Однако есть и более удобный и универсальный прибор – речь идет об оптическом рефрактометре, который способен также измерять температуру замерзания охлаждающей жидкости и «омывайки». Для измерения достаточно капнуть на нужное место из пипетки и прижать каплю прозрачным стеклом-крышкой. Посмотрев на свет через рефрактометр, вы увидите по риске плотность электролита. Это быстрее, да и точнее, чем привычный способ с ареометром.

Как повысить или понизить плотность в аккумуляторе

Как поднять плотность электролита в аккумуляторе или, наоборот, понизить ее, если измерения показали, что она выходит за пределы нормы? Сразу предупредим: придется повозиться.

Для начала нужно запастись электролитом повышенной (и заранее известной!) плотности. Для удобства возьмем электролит с плотностью 1,4 г/см3 – он достаточно безопасен при работе. Далее необходимо узнать, каков объем одной банки аккумулятора, полностью слив ее в стеклянную градуированную емкость. Отнимая некоторое количество электролита и доливая заранее запасенный «крепкий» (или, наоборот, дистиллированную воду), можно соответствующим образом довести плотность до необходимой. Ориентируйтесь на следующую таблицу для объема в 1 литр:

Измеренная плотностьОтбор электролита, млДоливка электролита, млДоливка воды, мл
1,24252256
1,25215220
1,26177180
1,27122126
1,286365
1,29
1,303638

В результате вы получите 1 литр электролита с плотностью 1,29 г/см3 – эта величина находится ровно посреди допуска.

Приведем пример: из банки слилось 0,8 литра раствора с плотностью 1,24 г/см3. Из простейшей пропорции можно вычислить, что нам нужно отлить 201 мл из этого объема и добавить 204 мл «крепкого» электролита. Почему различаются объем доливки и удаляемый объем? Любой бывалый самогонщик подскажет: раствор серной кислоты в воде, как и в случае со спиртом, меняет свой объем в зависимости от процентного соотношения компонентов, и 100 мл кислоты в смеси со 100 мл воды дадут отнюдь не 200 мл раствора.

Можно ли избежать этой возни? Естественно. Раз уж вам приходится сливать электролит из банки, то гораздо быстрее сразу залить туда свежий электролит нормальной плотности. Не помешает и промыть перед этим его дистиллированной водой: это лишний плюс для ресурса батареи.

Видео: Как правильно поднять плотность электролита в аккумуляторе

Как повысить плотность электролита в аккумуляторе?

Каждый год автолюбители сталкиваются с проблемой зарядки аккумулятора, сульфатации и десульфатации. Многие измеряют плотность электролита и пытаются ее восстановить. Но почему нельзя повысить плотность аккумулятора без добавления кислоты в электролит? Давайте ответим на этот вопрос.

Рассмотрим процессы, которые протекают при заряде и разряде аккумулятора — теория аккумулятора

Классическая формула:

                    ⇐ заряд            

Pb + PbO2 + 2H2SO4  ⇐        ⇒  2PbSO4 + 2H2 O  (1)

                    разряд ⇒

Если внимательно разобрать формулу, то очевидно, что при разряде аккумулятора у нас образуется такое вещество, как сульфат свинца. Это вещество (соль) очень плохо растворимо в воде и при определенной концентрации выпадает в осадок, иногда образуя кристаллы. Из за образования данного вещества и уменьшения концентрации кислоты в электролите, соответственно пропадает плотность. Доведя аккумулятор до абсолютного разряда, плотность в электролите станет ровна единице. В растворе, будет отсутствовать кислота.

Если мы вернемся к вопросу: «Почему нельзя повысить плотность не добавляя кислоты в электролит?», а только лишь повышением напряжения, то ответ очевиден.

Предположим у нас при плотности 1,25 г/см3, которую залили на заводе, в аккумуляторе присутствует 100 молекул кислоты при полном заряде, мы начали разряжать аккумулятор, получаем 100 молекул сульфата. Если дальше заряжать аккумулятор мы опять получим те же 100 молекул кислоты и плотность 1,25 г/см3 (если не испарилась вода).

Вывод: если мы не добавляли кислоту в электролит, и у нас повысилась плотность – мы потеряли воду.

Теперь давайте разберемся с коварным веществом сульфатом свинца. Это вещество очень плохо растворимо в воде, а это значит, что насыщенный раствор данного вещества получается при очень небольшой его концентрации в электролите. Когда мы разряжаем аккумулятор, концентрация раствора сульфата свинца возрастает. Поэтому все производители аккумуляторов пишут придельное напряжение разряда аккумулятора (для 12В аккумулятора это 10,8В). Дальнейший разряд приводит к тому, что образуется перенасыщенный раствор сульфата свинца. С перенасыщенными растворами мы встречались в школе. Например, выращивая кристаллы из медного купороса. Когда в перенасыщенный раствор попадает нить, то на ней сразу начинает расти красивый синий камень. Такой же процесс происходит в аккумуляторе, начинают расти кристаллы сульфата свинца и самая большая проблема, они уже обратно не растворяются  в воде. Именно этот процесс принято называть сульфатацией. Эти кристаллы не проводят электричество, поэтому вырастание их на пластинах приводит к умиранию аккумулятора. Свойства этого кристалла можно сравнить с кристаллом оксида алюминия. Например, алюминиевая ложка не растворяется в чае, хотя алюминий, в чистом виде, очень хорошо вступает в реакцию и с водой и с воздухом. Так вот, когда мы изготавливаем алюминиевую ложку, поверхностный слой практически сразу вступает в реакцию с воздухом и ложка покрывается тончайшим слоем оксида алюминия, который мы не видим, и именно этот слой защищает нашу ложку от растворения в чае (или в частности в воде).
Так же и с сульфатом свинца в аккумуляторе, он оседает на поверхности пластин и не дает нормальному протеканию процессов.

Обратим внимание на процессы ускоряющие сулифатацию. Как раз недостаток воды, которая испаряется, очень сильно влияет на ускорение процесса. Мы только что обсудили перенасыщенный раствор сульфата. Так вот перенасыщение его произойдет быстрее, если в аккумуляторе не хватает воды, следовательно и оседание сульфата на поверхностях пластины пройдет быстрее.

Возвращаясь к нашим 100 молекулам — в связанном состоянии теряем группу SO4, далее при заряде мы уже получаем , к примеру, 50 молекул кислоты. Емкость аккумулятора изменилась в меньшую сторону.

Теперь вернемся к процессам заряда аккумулятора зарядными устройствами. Есть две (не будем сильнее углубляться в тему) основные схемы заряда аккумулятора, постоянным током (часто пишут IU) и постоянным напряжением (UI). Например, зарядные устройства Optimate используют первую схему. Она более правильная. Смысл ее в том, что в аккумулятор подается постоянный ток. Происходит та реакция, о которой мы говорили выше, оставшиеся наши молекулы, а их осталось 50, становятся снова кислотой. И так как замещать больше нечего, напряжение на пластинах повышается до 14,4В. Optimate понимает, что замещать больше нечего и переходит в другой режим работы. Дальнейший заряд не приведет к увеличению емкости, а лишь усугубит положение путем выпаривания воды из электролита.

Если мы заряжаем постоянным напряжением, то устройство не понимает, произошла ли вся замена растворенных молекул сульфата свинца на молекулы кислоты. А это ведет к тому, что дальнейшая подача тока в аккумулятор будет замещать не сульфат свинца, а непосредственно восстанавливать воду до молекул водорода и кислорода, выпаривая ее дальше из электролита. Процесс кипения аккумулятора — это активное выделение на пластинах водорода и кислорода приводит к визуальному представлению, что аккумулятор кипит. К чему приводит потеря воды мы рассмотрели выше.

Лучшие инструменты

PL-C010P

Зарядное устройство Battery Service Expert, PL-C010P

14.4/14.7/16В, ток 2,5, 6, 10А, десульфатация — импульсы/16В, SLA, GEL, AGM, Ca/Ca

8 350 ₽

Как проверить плотность аккумулятора — Статьи

Каждая АКБ является накопителем электрической энергии. Принимая во внимание тот факт, что без батареи ни один автомобиль работать не сможет, крайне важно тщательно следить за ее состоянием. Одним из самых значимых моментов в подобном анализе является вопрос о том, как проверить плотность аккумулятора.

Технические нормативы

Электролит – это раствор серной кислоты, взаимодействующий со свинцом. Сочетание данных элементов дает напряжение, составляющее приблизительно 12 вольт.

Уровень плотности электролита при эксплуатации транспортного средства постоянно колеблется. Какая плотность АКБ является оптимальной? Значения 1.25-1.29 г/см3 принято считать идеальными.

Если отказаться от поддержания необходимого уровня плотности, батарея будет быстро разряжаться. Более того, резко снизится срок ее эксплуатации. В большинстве случаев плотность «проседает» при перезарядках, когда температура становится слишком высокой (электролит и вода испаряются).

Важная информация

Перед тем, как проверить плотность АКБ, изучите следующие данные:

  • Слишком высокий уровень плотности электролита – это не преимущество, а недостаток. Если вы зафиксировали завышенные значения, смело разбавляйте серную кислоту дистиллятом. А все потому, что чрезмерное содержание серной кислоты оказывает негативное влияние на состояние пластин. Практика знает случаи, когда такие компоненты просто-напросто разъедались;
  • Если вы зафиксировали значение, которое ниже нормальной плотности АКБ, приступайте к зарядке батареи. Данный процесс должен длиться, как минимум, 10 часов.

Проверка

Как проверить плотность аккумулятора? Для этой цели вам понадобится прибор под названием ареометр. От вас потребуется выполнить следующие шаги:

  • Убедитесь в том, что температура в помещении составляет 20-25°С;
  • Тщательно очистите корпус устройства от грязи и пыли. Крайне важно, чтобы в мерном образце не было посторонних частиц;
  • Опустите измерительный прибор в отверстие и захватите некоторый объем электролита;
  • Проанализируйте показания;
  • Слейте электролит обратно.

Помните о том, что такую процедуру следует провести для каждой банки. Чтобы получить максимально точные результаты, зарядите батарею. До проведения измерения она должна выстоять 3 часа при комнатной температуре. Описываемую операцию необходимо выполнять в защитных перчатках.

Наши услуги

Если вы хотите купить легковой аккумулятор, свяжитесь с нами по номеру +7 (343) 312-81-50. мы работаем как с юридическими лицами, так и частными автовладельцами. Мы гарантируем высокое качество поставляемой продукции. В наличии имеются все необходимые сертификаты и лицензии.

Повышение плотности электролита в АКБ


В холодное время года или после длительного простоя могут появиться проблемы с запуском двигателя. Это происходит из-за севшей АКБ. Длительная зарядка батареи не помогает справиться с этой проблемой, если плотность электролита значительно снизилась.


Почему снижается плотность


Плотность электролита изменяется во время использования аккумулятора. Когда батарея теряет заряд, показатель понижается, и наоборот. Очень низкая плотность электролита связана со следующими причинами:

  • Влияние низких температур в течение длительного времени;
  • Перезаряд АКБ, вследствие чего происходит выкипание электролита;
  • Регулярное добавление воды.


Воду в электролит доливать можно, но перед этим нужно проверять его плотность и не проводить процедуру без необходимости. Делайте замеры в каждой банке. Нормальные значения – от 1,25 до 1, 29. Чем холоднее регион, тем выше должна быть плотность.


Как повысить плотность


Чтобы провести процедуру повышения плотности, следуйте плану.

  1. Зарядите батарею (если АКБ разряжена, то при добавлении раствора, поднимется концентрация серной кислоты – пластины разрушается).
  2. Температура электролита должна быть от 20 до 25 градусов.
  3. Осмотрите аккумулятор: на нем не должно быть дефектов и повреждений, особое внимание уделите токовыводам.
  4. Если уровень в норме (от 1,18) долейте электролит с нормальной плотностью до 1,25.
  5. Выполняйте долив в каждой банке, используя клизму-грушу.
  6. Потрясите аккумулятор, чтобы новый раствор перемешался со старым.


Что делать при минимальной плотности


Если уровень упал ниже 1,18 долив электролита не поможет. Используйте аккумуляторную кислоту − у нее очень высокая плотность (1,84). Заливайте кислоту по описанной выше схеме. Выполняйте процедуру в защитной одежде, перчатках и маске в хорошо проветриваемом помещении или на открытом воздухе. Следите, чтобы кислота не попала на кожу – может появиться ожог.


Повышение плотности зарядным устройством


Повысить плотность электролита можно при помощи слабого тока. Такой способ требует больше времени. 


  1. Полностью зарядите АКБ.
  2. Жидкость начнет выкипать, произойдет испарение дистиллированной воды.
  3. Общий уровень электролита понизится.
  4. Долейте новый электролит необходимой плотности.
  5. Сделайте замеры ареометром.
  6. Если показания недостаточны, повторите процедуру, пока плотность не достигнет 1,25 г/см3.


Не спешите выбрасывать аккумулятор, если машина стала плохо заводиться. Попробуйте восстановить АКБ методом повышения плотности электролита. Это займет немного времени, но продлит жизнь батареи на несколько сезонов и сэкономит деньги.


А чтобы продлить жизнь своему акб, соблюдайте простые правила ухода. Читайте.

Батарея

Сравнение плотности энергии

Рисунки на этой странице были получены из разного количества источников при различных условиях. Сравнение аккумуляторных элементов затруднено, и любое фактическое сравнение должно использовать проверенные данные для конкретной модели аккумулятора.

Батареи

работают по-разному из-за различных процессов, используемых разными производителями. Даже ячейка другой модели от того же производителя будет работать по-разному в зависимости от того, для чего они оптимизированы.

Вы также должны принять во внимание фактическое приложение, в котором используется аккумулятор. Это может существенно повлиять на производительность батареи, поэтому при выборе аккумуляторной батареи для вашего продукта необходимо учитывать множество факторов.

Для получения дополнительной информации см. Сообщение в нашем блоге о том, как выбрать тип элемента для использования в аккумуляторной батарее.


Сравнение плотности энергии в аккумуляторных элементах

Эта сравнительная таблица аккумуляторов показывает объемную и гравиметрическую плотности энергии на основе голых аккумуляторных элементов.

Фото предоставлено НАСА — Национальное управление по аэронавтике и исследованию космического пространства


Плотность энергии, сравнение размеров и веса

Приведенная ниже сравнительная таблица аккумуляторов показывает объемную и удельную плотности энергии, показывая меньшие размеры и меньший вес ячеек.


Технические характеристики Battery Chemistry

Технические характеристики Свинцово-кислотный NiCd NiMH Литий-ионный
Кобальт Марганец Фосфат
Удельная энергия (Втч / кг) 30-50 45-80 60-120 150–190 100-135 90-120
Внутреннее сопротивление (мОм) <100
12В в упаковке
100-200
6 В в упаковке
200-300
6 В в упаковке
150-300
7.2В
25-75
на ячейку
25-50
на ячейку
Жизненный цикл (разрядка 80%) 200-300 1000 300-500 500–1 000 500–1 000 1 000–2 000
Время быстрой зарядки 8-16ч 1 час стандартно 2-4 часа 2-4 часа 1 ч или меньше 1 ч или меньше
Допуск перезарядки Высокая Умеренный Низкий Низкий.Не выносит непрерывного заряда
Саморазряд / месяц (комнатная температура) 5% 20% 30% <10%
Напряжение элемента (номинальное) 2 В 1,2 В 1.2В 3,6 В 3,8 В 3,3 В
Напряжение отключения заряда (В / элемент) 2,40
Поплавок 2,25
Обнаружение полного заряда
по сигнатуре напряжения
4,20 3,60
Напряжение отключения разряда (В / элемент, 1С) 1.75 1,00 2,50–3,00 2,80
Пиковый ток нагрузки
Лучший результат
5C
0,2C
20C
1C
5C
0,5C
> 3С
<1С
> 30 ° C
<10 ° C
> 30 ° C
<10 ° C
Температура заряда от -20 до 50 ° C
от -4 до 122 ° F
от 0 до 45 ° C
от 32 до 113 ° F
от 0 до 45 ° C
от 32 до 113 ° F
Температура нагнетания от -20 до 50 ° C
от -4 до 122 ° F
от -20 до 65 ° C
от -4 до 149 ° F
от -20 до 60 ° C
от -4 до 140 ° F
Требования к техническому обслуживанию 3-6 месяцев
(доплата)
30-60 дней
(выписка)
60-90 дней
(выписка)
Не требуется
Требования безопасности Термостойкость Термостойкость, общий предохранитель Обязательная схема защиты
Используется с Конец 1800-х годов 1950 1990 1991 1996 1999
Токсичность Очень высокий Очень высокий Низкий Низкий

Какова удельная энергия литий-ионной батареи?

Что такое плотность энергии батареи?

Плотность энергии — это мера того, сколько энергии содержится в батарее по отношению к ее весу.Это измерение обычно выражается в ватт-часах на килограмм (Втч / кг). Ватт-час — это единица измерения электрической энергии, которая эквивалентна потреблению одного ватта за один час.

Плотность мощности — это мера того, насколько быстро может быть доставлена ​​энергия, а не количество доступной накопленной энергии. Плотность энергии часто путают с плотностью мощности, поэтому важно понимать разницу между ними.

Зачем вам батарея с высокой плотностью энергии?

Чтобы лучше понять литий-ионные батареи, вы должны понять, почему высокая плотность энергии является желательной характеристикой батареи.

Аккумулятор с высокой плотностью энергии имеет большее время работы от аккумулятора по сравнению с размером аккумулятора. В качестве альтернативы аккумулятор с высокой плотностью энергии может выдавать такое же количество энергии, но занимает меньшую площадь по сравнению с аккумулятором с более низкой плотностью энергии. Это значительно расширяет возможности аккумуляторных приложений.

При заводских или складских настройках аккумуляторные батареи для вилочных погрузчиков могут весить тысячи фунтов. Легкий аккумулятор для вилочных погрузчиков дает некоторые преимущества с точки зрения безопасности и обслуживания.

Если плотность энергии батареи слишком высока, это может представлять угрозу безопасности. Когда в ячейку упаковано больше активного материала, увеличивается риск теплового события.

Какой тип аккумуляторной батареи имеет самую высокую плотность энергии?

Существует несколько различных типов аккумуляторных батарей с различной плотностью энергии, отражающей их внутренний химический состав.

  • Плотность энергии свинцово-кислотных аккумуляторов составляет 30-50 Втч / кг
  • Плотность энергии никель-кадмиевых батарей составляет 45-80 Втч / кг
  • Плотность энергии никель-металлогидридных батарей составляет 60-120 Втч / кг
  • Плотность энергии литий-ионного аккумулятора составляет от 50 до 260 Втч / кг

Типы литий-ионных батарей и их удельная энергия

Литий-ионные батареи часто объединяются в группу батарей, каждая из которых содержит литий, но их химический состав может сильно различаться и, как следствие, разной производительности.

Большинство типов литий-ионных аккумуляторов имеют аналогичную конструкцию катода с алюминиевой подложкой, угольного или графитового анода с медной подложкой, сепаратора и электролита из литиевой соли в органическом растворителе.

Производители экспериментировали с материалами, из которых изготовлены катод и анод. Они также изменили состав электролита. Эти различия являются причиной того, что литий-ионные батареи различаются по уровню плотности энергии.

Теперь мы рассмотрим самые популярные химические составы литий-ионных аккумуляторов, а также их соответствующие плотности энергии, варианты использования, преимущества и недостатки.

Industry Titans: Литий-титанатные (LTO) батареи

Аккумулятор LTO является одним из старейших типов литий-ионных аккумуляторов и имеет меньшую удельную энергию, чем литий-ионные аккумуляторы, около 50-80 Втч / кг.

В этих батареях титанат лития используется в аноде вместо углерода, что позволяет электронам входить и выходить из анода быстрее, чем в других типах литий-ионных батарей.

Такая конструкция позволяет батареям LTO заряжаться намного быстрее и безопасно выдерживать большие токи, но низкая плотность энергии делает их плохо подходящими для погрузочно-разгрузочного оборудования.

Они, как правило, более дорогие и обычно используются для электромобилей, автомобильных аудиоприложений и мобильных медицинских устройств.

Высокая энергия, высокий риск: литий-кобальтовые батареи (LCO)

Литий-кобальтооксидные батареи

имеют высокую удельную энергию 150-200 Втч / кг. Их катод состоит из оксида кобальта с типичным углеродным анодом со слоистой структурой, которая перемещает ионы лития от анода к катоду и обратно.

Эти типы батарей популярны из-за их высокой плотности энергии и обычно используются в сотовых телефонах, ноутбуках и, в последнее время, в электромобилях.

Кобальт — очень энергоемкий материал, но он может быть дорогим. Поскольку спрос на электромобили возрастает, этот ресурс быстро истощается. Фактически, вскоре мир может столкнуться с нехваткой кобальта.

Кобальт также очень летуч. Литий-кобальтовые батареи не выдерживают больших токов из-за риска перегрева, что представляет собой значительный риск для безопасности. Батареи LCO имеют более низкую термическую стабильность, что означает, что они очень чувствительны к более высоким рабочим температурам и перезарядке.

Производительность по цене: Литий-никель-марганцево-оксидные батареи (NMC)

Литий-никель-марганцево-кобальтооксидные батареи

также обладают высокой плотностью энергии 150–220 Втч / кг. Они используют кобальт в катоде так же, как батареи LCO, но они также содержат никель и марганец для повышения стабильности.

Аккумуляторы

NMC используются сегодня в большинстве производимых электромобилей, но также используются в медицинских устройствах и электровелосипедах.

Секрет успеха этой батареи заключается в ее хорошо сбалансированном химическом составе; никель, как известно, энергоемкий, но нестабильный, как и кобальт, в то время как марганец более стабилен, но также имеет более низкую плотность энергии.Конкретное соотношение различных элементов варьируется в зависимости от производителя, но добавление никеля обычно предназначено для уменьшения количества дорогостоящего кобальта.

Батареи

NMC могут выдерживать большие токи заряда и более широкий диапазон температур, чем батареи LCO. Однако, поскольку батарея по-прежнему содержит кобальт, стоимость увеличивается из-за дефицита на рынке.

Доступное, безопасное и надежное: литий-железо-фосфатные батареи (LFP)

Аккумуляторы

LFP обладают высокой плотностью энергии 90-160 Втч / кг.Хотя это меньше, чем у некоторых кобальтовых батарей, он по-прежнему остается одним из самых высоких среди всех типов батарей.

В батареях

LFP используется фосфат железа для катода и графитовый электрод в сочетании с металлической подложкой для анода.

Литий-фосфат железа или LiFePO4 — это природный минерал, недорогой, нетоксичный и обладающий хорошей термической стабильностью и высокой плотностью энергии.

Аккумуляторы

LFP идеально подходят для тяжелого оборудования и промышленных сред, поскольку они способны выдерживать большие нагрузки и широкий диапазон температур.Они появились как новый вариант для вилочных погрузчиков и другого тяжелого электрического оборудования, которое требует высокого уровня надежности и исторически использует свинцово-кислотные батареи.

Литий-ионная батарея, тип

Плотность энергии (Втч / кг)

Плюсы

Минусы

Титанат лития (LTO)

50-80

Долговечность, стабильность

Низкая плотность энергии, дороже

Оксид лития-кобальта (LCO)

150-200

Высокая плотность энергии

Неустойчивый и дорогой

Литий-никель-марганец-кобальт оксид (NMC)

150-220

Высокая плотность энергии

Безопаснее, чем LCO, но все же относительно нестабильно и дорого

Литий-фосфат железа (LFP)

90–160

Средняя-высокая плотность энергии

Стабильная, долговечная и более высокая удельная энергия

Все типы литий-ионных аккумуляторов уникальны.Крайне важно понимать, какой химический состав литий-ионных аккумуляторов лучше всего подходит для вашего применения.

Если вы ищете лучшую батарею для погрузочно-разгрузочного оборудования, литий-железо-фосфатная батарея, вероятно, станет лучшим выбором. Все блоки Flux Power LiFT сконструированы исключительно с элементами LFP, поскольку они обеспечивают наилучший баланс между безопасностью и производительностью.

Преимущества и ограничения различных типов батарей

Нас часто озадачивают объявления о новых батареях, которые, как говорят, обладают очень высокой плотностью энергии, обеспечивают 1000 циклов заряда / разряда и тонкие как бумага.Они настоящие? Возможно — но не в одном аккумуляторе. Хотя один тип батарей может быть рассчитан на малый размер и длительное время работы, этот аккумулятор не прослужит долго и изнашивается преждевременно. Другой аккумулятор может быть рассчитан на долгий срок службы, но его размер будет большим и громоздким. Третья батарея может обеспечить все желаемые характеристики, но цена будет слишком высокой для коммерческого использования.

Производители аккумуляторов хорошо осведомлены о потребностях клиентов и отреагировали, предложив пакеты, которые лучше всего подходят для конкретных приложений.Индустрия мобильных телефонов — пример умной адаптации. Акцент делается на небольшие размеры, высокую удельную энергию и невысокую цену. На втором месте — долголетие.

Надпись NiMH на батарейном блоке автоматически не гарантирует высокой плотности энергии. Например, призматический никель-металлогидридный аккумулятор для мобильного телефона имеет тонкую форму. Такой пакет обеспечивает плотность энергии около 60 Втч / кг, а количество циклов составляет около 300. Для сравнения, цилиндрический NiMH аккумулятор обеспечивает плотность энергии 80 Втч / кг и выше.Тем не менее, количество циклов этой батареи от умеренного до низкого. NiMH аккумуляторы высокой прочности, выдерживающие 1000 разрядов, обычно упаковываются в громоздкие цилиндрические элементы. Плотность энергии этих ячеек составляет скромные 70 Втч / кг.

Компромиссы существуют и в отношении литиевых батарей. Литий-ионные блоки производятся для оборонных приложений, плотность энергии которых намного превышает их коммерческий эквивалент. К сожалению, эти литий-ионные аккумуляторы сверхвысокой емкости считаются небезопасными в руках населения, а высокая цена делает их недоступными для коммерческого рынка.

В этой статье мы рассмотрим преимущества и ограничения серийного аккумулятора. Так называемые чудо-батареи, которые просто живут в контролируемой среде, исключаются. Мы тщательно изучаем батареи не только с точки зрения плотности энергии, но и с точки зрения долговечности, характеристик нагрузки, требований к техническому обслуживанию, саморазряда и эксплуатационных расходов. Поскольку никель-кадмиевые батареи остаются стандартом, с которым сравниваются другие батареи, мы сравниваем альтернативные химические составы с этим классическим типом батарей.

Никель-кадмий (NiCd) — зрелый и хорошо изученный, но с относительно низкой плотностью энергии. NiCd используется там, где важны долгий срок службы, высокая скорость разряда и экономичная цена. Основные области применения — двусторонняя радиосвязь, биомедицинское оборудование, профессиональные видеокамеры и электроинструменты. NiCd содержит токсичные металлы и не наносит вреда окружающей среде.

Никель-металлогидрид (NiMH) — имеет более высокую плотность энергии по сравнению с NiCd за счет сокращения срока службы.NiMH не содержит токсичных металлов. Приложения включают мобильные телефоны и портативные компьютеры.

Свинцово-кислотный — наиболее экономичный для мощных систем, где вес не имеет большого значения. Свинцово-кислотные батареи являются предпочтительным выбором для больничного оборудования, инвалидных колясок, аварийного освещения и систем ИБП.

Lithium Ion (Li ‑ ion) — самая быстрорастущая аккумуляторная система. Литий-ионный используется там, где первостепенное значение имеют высокая плотность энергии и легкий вес. Технология хрупкая, и для обеспечения безопасности требуется схема защиты.Приложения включают портативные компьютеры и сотовые телефоны.

Литий-ионный полимер (литий-ионный полимер) — предлагает атрибуты литий-ионного аккумулятора в сверхтонкой геометрии и упрощенной упаковке. Основные приложения — мобильные телефоны.

На рисунке 1 сравниваются характеристики шести наиболее часто используемых систем аккумуляторных батарей с точки зрения плотности энергии, срока службы, требований к упражнениям и стоимости. Цифры основаны на средних номиналах имеющихся в продаже батарей на момент публикации.

никель-кадмиевые NiMH Свинцово-кислотный Литий-ионный Литий-ионный полимерный Многоразовый
Щелочной
Гравиметрическая плотность энергии (Втч / кг) 45-80 60-120 30-50 110–160 100–130 80 (начальная)
Внутреннее сопротивление
(включая периферийные цепи) в мОм
От 100 до 200 1
Упаковка 6 В
От 200 до 300 1
Пакет на 6 В
<100 1
12В в упаковке
От 150 до 250 1
7.Пакет 2V
От 200 до 300 1
Пакет 7,2 В
От 200 до 2000 1
Упаковка 6 В
Срок службы (до 80% от начальной емкости) 1500 2 От 300 до 500 2,3 От 200 до
300 2
От 500 до 1000 3 От 300 до
500
50 3
(до 50%)
Время быстрой зарядки 1 час типичный 2-4ч 8-16ч 2-4ч 2-4ч 2-3 часа
Допуск перезарядки умеренный низкий высокий очень низкий низкий умеренный
Саморазряд / месяц (комнатная температура) 20% 4 30% 4 5% 10% 5 ~ 10% 5 0.3%
Напряжение элемента (номинальное) 1,25 В 6 1,25 В 6 3,6 В 3,6 В 1,5 В
Ток нагрузки
— пик
— лучший результат

20C
1C

5C
0,5C или ниже

5C 7
0.2C

> 2C
1C или ниже

> 2C
1C или ниже

0,5C
0,2C или ниже
Рабочая температура (только нагнетание) От -40 до
60 ° C
От -20 до
60 ° C
От -20 до
60 ° C
От -20 до
60 ° C
От 0 до
60 ° C
От 0 до
65 ° C
Требования к техническому обслуживанию От 30 до 60 дней От 60 до 90 дней От 3 до 6 месяцев 9 не требуется не требуется не требуется
Стандартная стоимость батареи
(долл. США, только для справки)
50 долларов США
(7,2 В)
$ 60
(7,2 В)
25 $
(6V)
100 $
(7,2 В)
100 $
(7,2 В)
$ 5
(9В)
Стоимость цикла (долл. США) 11 $ 0.04 0,12 долл. США 0,10 долл. США 0,14 долл. США 0,29 долл. США 0,10–0,50 долл. США
Коммерческое использование с 1950 1990 1970 (герметичный свинцово-кислотный) 1991 1999 1992

Рисунок 1: Характеристики обычно используемых аккумуляторных батарей

  1. Внутреннее сопротивление аккумуляторной батареи зависит от номинала ячеек, типа схемы защиты и количества ячеек.Схема защиты из литий-ионных и литий-полимерных добавляет около 100 мОм.
  2. Срок службы зависит от регулярного обслуживания батареи. Несоблюдение периодических циклов полной разрядки может сократить срок службы в три раза.
  3. Срок службы зависит от глубины разряда. Мелкие разряды обеспечивают больше циклов, чем глубокие разряды.
  4. Разряд достигает максимума сразу после зарядки, затем спадает. Емкость NiCd уменьшается на 10% в первые 24 часа, а затем снижается примерно до 10% каждые 30 дней.Саморазряд увеличивается с повышением температуры.
  5. Цепи внутренней защиты обычно потребляют 3% накопленной энергии в месяц.
  6. 1,25 В — напряжение открытой ячейки. Обычно используется значение 1,2 В. Между ячейками нет разницы; это просто метод оценки.
  7. Способен к сильноточным импульсам.
  8. Относится только к разряду; диапазон температур заряда более ограничен.
  9. Техническое обслуживание может осуществляться в форме «выравнивающего» или «дополнительного» заряда.
  10. Стоимость аккумулятора для имеющихся в продаже портативных устройств.
  11. Рассчитывается из цены батареи, разделенной на срок службы. Не включает стоимость электричества и зарядных устройств.

Наблюдение: Интересно отметить, что NiCd имеет самое короткое время зарядки, обеспечивает самый высокий ток нагрузки и предлагает самую низкую общую стоимость цикла, но при этом предъявляет самые высокие требования к техническому обслуживанию.

Никель-кадмиевый (NiCd) аккумулятор

NiCd предпочитает быструю зарядку медленной зарядке и импульсную зарядку постоянному току.Все остальные химические соединения предпочитают неглубокий разряд и умеренные токи нагрузки. NiCd — сильный и тихий рабочий; каторжный труд не представляет проблемы. Фактически, NiCd — единственный тип батарей, который хорошо работает в суровых условиях работы. Он не любит, когда его балуют днями, когда он сидит в зарядном устройстве и используется лишь изредка в течение коротких периодов времени. Периодический полный разряд настолько важен, что, если его не использовать, на пластинах элементов образуются большие кристаллы (также называемые памятью), и NiCd постепенно теряет свои характеристики.

Среди перезаряжаемых батарей никель-кадмиевые батареи остаются популярным выбором для таких приложений, как двусторонняя радиосвязь, оборудование для оказания неотложной медицинской помощи и электроинструменты. Батареи с более высокой плотностью энергии и менее токсичными металлами вызывают переход от никель-кадмиевых аккумуляторов к более новым технологиям.

Преимущества и ограничения никель-кадмиевых аккумуляторов

Преимущества

Быстрая и простая зарядка — даже после длительного хранения.

Большое количество циклов заряда / разряда — при правильном обслуживании NiCd обеспечивает более 1000 циклов заряда / разряда.

Хорошие нагрузочные характеристики — NiCd позволяет заряжаться при низких температурах.

Длительный срок хранения — в любом состоянии заряда.

Простое хранение и транспортировка — большинство авиагрузов принимают NiCd без особых условий.

Хорошие низкотемпературные характеристики.

Простите, если злоупотребляли — NiCd — одна из самых прочных аккумуляторных батарей.

Экономичная цена — никель-кадмиевый аккумулятор является самым дешевым аккумулятором с точки зрения стоимости цикла.

Доступен в широком диапазоне размеров и вариантов исполнения — большинство никель-кадмиевых элементов имеют цилиндрическую форму.

Ограничения

Относительно низкая плотность энергии — по сравнению с более новыми системами.

Эффект памяти — необходимо периодически тренировать NiCd, чтобы предотвратить запоминание.

Экологичность — NiCd содержит токсичные металлы. Некоторые страны ограничивают использование никель-кадмиевых батарей.

Имеет относительно высокий саморазряд — после хранения требует подзарядки.

Рисунок 2: Преимущества и недостатки никель-кадмиевых батарей.

Никель-металлогидридный (NiMH) аккумулятор

Исследование системы NiMH началось в 1970-х годах как средство обнаружения того, как хранить водород для никель-водородной батареи.Сегодня никель-водородные батареи используются в основном для спутниковой связи. Они громоздкие, содержат стальные баллончики высокого давления и стоят тысячи долларов за элемент.

В первые дни экспериментов с NiMH батареями металлогидридные сплавы были нестабильны в окружающей среде элемента, и желаемые рабочие характеристики не могли быть достигнуты. В результате разработка NiMH замедлилась. В 1980-х годах были разработаны новые гидридные сплавы, которые были достаточно стабильны для использования в электролизере.С конца 1980-х годов NiMH неуклонно совершенствовалась.

Успех NiMH обусловлен его высокой плотностью энергии и использованием экологически чистых металлов. Современные никель-металлгидридные аккумуляторы обеспечивают на 40 процентов более высокую плотность энергии по сравнению с никель-кадмиевыми сплавами. Есть потенциал для еще более высоких возможностей, но не без некоторых отрицательных побочных эффектов.

NiMH менее долговечен, чем NiCd. Езда на велосипеде под большой нагрузкой и хранение при высокой температуре сокращает срок службы. NiMH страдает от высокого саморазряда, который значительно больше, чем у NiCd.

NiMH заменяет NiCd на таких рынках, как беспроводная связь и мобильные вычисления. Во многих частях мира покупателю рекомендуется использовать никель-металлогидридные, а не никель-кадмиевые батареи. Это связано с заботой об окружающей среде по поводу небрежной утилизации использованной батареи.

Эксперты сходятся во мнении, что NiMH значительно улучшился за эти годы, но ограничения остаются. Большинство недостатков присущи никелевой технологии и присущи никель-кадмиевым батареям.Широко признано, что NiMH — это промежуточный этап в технологии литиевых батарей.

Преимущества и ограничения NiMH аккумуляторов

Преимущества

Емкость на 30-40% выше, чем у стандартного никель-кадмиевого сплава.NiMH обладает потенциалом для еще более высокой плотности энергии.

Менее подвержен памяти, чем NiCd. Периодические циклы упражнений требуются реже.

Простое хранение и транспортировка — условия транспортировки не подлежат нормативному контролю.

Экологичность — содержит только легкие токсины; выгодно для вторичной переработки.

Ограничения

Ограниченный срок службы — при многократном глубоком цикле, особенно при высоких токах нагрузки, производительность начинает ухудшаться после 200–300 циклов.Предпочтительны мелкие, а не глубокие циклы разряда.

Ограниченный ток разряда — хотя никель-металлгидридная батарея способна обеспечивать высокие токи разряда, повторяющиеся разряды с высокими токами нагрузки сокращают срок службы батареи. Наилучшие результаты достигаются при токах нагрузки от 0,2 до 0,5 ° C (от одной пятой до половины номинальной мощности).

Требуется более сложный алгоритм зарядки — NiMH выделяет больше тепла во время зарядки и требует более длительного времени зарядки, чем NiCd.Капельный заряд имеет решающее значение и требует тщательного контроля.

Высокий саморазряд — саморазряд NiMH примерно на 50 процентов выше, чем у NiCd. Новые химические добавки улучшают саморазряд, но за счет более низкой плотности энергии.

Производительность ухудшается при хранении при повышенных температурах — NiMH следует хранить в прохладном месте и при уровне заряда около 40 процентов.

Высокие эксплуатационные расходы — аккумулятор требует регулярной полной разрядки для предотвращения образования кристаллов.

Примерно на 20 процентов дороже, чем NiCd — NiMH аккумуляторы, рассчитанные на большой ток, дороже, чем обычная версия.

Рисунок 3: Преимущества и ограничения NiMH аккумуляторов

Свинцово-кислотный аккумулятор

Свинцово-кислотный аккумулятор, изобретенный французским врачом Гастоном Планте в 1859 году, стал первым перезаряжаемым аккумулятором для коммерческого использования.Сегодня залитые свинцово-кислотные батареи используются в автомобилях, вилочных погрузчиках и крупных системах бесперебойного питания (ИБП).

В середине 1970-х годов исследователи разработали необслуживаемую свинцово-кислотную батарею, которая могла работать в любом положении. Жидкий электролит был преобразован в увлажненные сепараторы, и корпус был герметизирован. Были добавлены предохранительные клапаны, позволяющие выпускать газ во время зарядки и разрядки.

Под влиянием разных приложений появилось два обозначения батарей.Это небольшая герметичная свинцово-кислотная система (SLA), также известная под торговой маркой Gelcell, и свинцово-кислотная кислота с большим клапаном (VRLA). Технически обе батареи одинаковые. (Инженеры могут возразить, что слово «герметичный свинцово-кислотный» употребляется неправильно, потому что ни одна свинцово-кислотная батарея не может быть полностью герметичной.) Из-за того, что мы делаем упор на портативные батареи, мы ориентируемся на SLA.

В отличие от свинцово-кислотных аккумуляторных батарей, SLA и VRLA спроектированы с низким потенциалом перенапряжения, чтобы не дать аккумулятору достичь своего газогенерирующего потенциала во время зарядки.Избыточная зарядка вызовет газообразование и истощение воды. Следовательно, эти батареи никогда не могут быть полностью заряжены.

Свинцово-кислотный не подлежит памяти. Если оставить аккумулятор на плавающем заряде в течение длительного времени, это не приведет к повреждению. У аккумулятора лучше всего сохраняется заряд среди аккумуляторных батарей. В то время как NiCd саморазряжается примерно на 40 процентов своей накопленной энергии за три месяца, SLA саморазряжает такое же количество за один год. SLA относительно недорого купить, но эксплуатационные расходы могут быть дороже, чем у NiCd, если полные циклы требуются на повторяющейся основе.

SLA не предусматривает быстрой зарядки — типичное время зарядки составляет от 8 до 16 часов. Соглашение об уровне обслуживания должно всегда храниться в заряженном состоянии. Оставление аккумулятора в разряженном состоянии вызывает сульфатирование, состояние, при котором аккумулятор трудно, а то и невозможно перезарядить.

В отличие от NiCd, SLA не любит глубоких циклов. Полная разрядка вызывает дополнительную нагрузку, и каждый цикл лишает аккумулятор небольшой емкости. Эта характеристика износа в той или иной степени применима и к батареям другого химического состава.Чтобы предотвратить перегрузку аккумулятора из-за повторяющейся глубокой разрядки, рекомендуется использовать более крупный аккумулятор SLA.

В зависимости от глубины разряда и рабочей температуры SLA обеспечивает от 200 до 300 циклов разрядки / зарядки. Основная причина относительно короткого срока службы — это коррозия сетки положительного электрода, истощение активного материала и расширение положительных пластин. Эти изменения наиболее распространены при более высоких рабочих температурах. Езда на велосипеде не предотвращает и не обращает вспять тенденции.

Оптимальная рабочая температура для батарей SLA и VRLA составляет 25 ° C (77 ° F). Как показывает практика, повышение температуры на 8 ° C (15 ° F) сокращает срок службы батареи вдвое. VRLA, который прослужит 10 лет при 25 ° C, будет годен только 5 лет при эксплуатации при 33 ° C (95 ° F). Та же батарея проработает чуть больше одного года при температуре 42 ° C (107 ° F).

Среди современных аккумуляторных батарей семейство свинцово-кислотных аккумуляторов имеет самую низкую плотность энергии, что делает их непригодными для портативных устройств, требующих компактных размеров.К тому же производительность при низких температурах оставляет желать лучшего.

SLA рассчитан на 5-часовую разрядку или 0,2 ° C. Некоторые батареи даже рассчитаны на медленную 20-часовую разрядку. Чем больше время разряда, тем выше показания емкости. SLA хорошо работает при высоких импульсных токах. Во время этих импульсов может быть достигнута скорость разряда, значительно превышающая 1С.

С точки зрения утилизации SLA менее опасен, чем NiCd аккумулятор, но высокое содержание свинца делает SLA экологически вредным.

Преимущества и ограничения свинцово-кислотных аккумуляторов

Преимущества

Недорого и просто в изготовлении — с точки зрения стоимости ватт-часов SLA является наименее дорогим.

Зрелая, надежная и хорошо изученная технология — при правильном использовании соглашение об уровне обслуживания является долговечным и обеспечивает надежное обслуживание.

Низкий саморазряд — скорость саморазряда одна из самых низких среди аккумуляторных систем.

Низкие требования к обслуживанию — нет памяти; нет электролита для заполнения.

Способен к высокой скорости разряда.

Ограничения

Нельзя хранить в разряженном состоянии.

Низкая плотность энергии — плохое соотношение веса и плотности энергии ограничивает использование в стационарных и колесных установках.

Допускает лишь ограниченное количество полных циклов разряда — хорошо подходит для приложений в режиме ожидания, требующих лишь периодических глубоких разрядов.

Не наносит вред окружающей среде — электролит и содержащийся в нем свинец могут нанести вред окружающей среде.

Ограничения на транспортировку затопленной свинцовой кислоты — существуют экологические проблемы, связанные с утечкой в ​​случае аварии.

При неправильной зарядке может произойти тепловой пробой.

Рисунок 4: Преимущества и недостатки свинцово-кислотных аккумуляторов.

Литий-ионный аккумулятор

Пионерские работы с литиевой батареей начались в 1912 году под руководством Г. Льюиса, но только в начале 1970-х годов первые неперезаряжаемые литиевые батареи стали коммерчески доступными.Литий — самый легкий из всех металлов, имеет наибольший электрохимический потенциал и обеспечивает наибольшую удельную плотность энергии.

Попытки разработать перезаряжаемые литиевые батареи последовали в 1980-х годах, но потерпели неудачу из-за проблем с безопасностью. Из-за присущей металлическому литию нестабильности, особенно во время зарядки, исследования переключились на неметаллическую литиевую батарею, использующую ионы лития. Хотя литий-ионный аккумулятор немного ниже по плотности энергии, чем металлический литий, он безопасен при соблюдении определенных мер предосторожности при зарядке и разрядке.В 1991 году корпорация Sony выпустила на рынок первый литий-ионный аккумулятор. Другие производители последовали их примеру. Сегодня литий-ионные аккумуляторы являются наиболее быстрорастущими и многообещающими.

Плотность энергии литий-ионных аккумуляторов обычно вдвое больше, чем у стандартных никель-кадмиевых аккумуляторов. Улучшение электродных активных материалов может увеличить плотность энергии почти в три раза по сравнению с NiCd. В дополнение к высокой емкости, нагрузочные характеристики достаточно хороши и ведут себя аналогично NiCd с точки зрения характеристик разряда (аналогичная форма профиля разряда, но другое напряжение).Плоская кривая разряда обеспечивает эффективное использование накопленной мощности в желаемом спектре напряжения.

Высокое напряжение ячеек позволяет использовать аккумуляторные блоки только с одной ячейкой. Большинство современных мобильных телефонов работают от одной ячейки, что упрощает конструкцию батарей. Для поддержания той же мощности потребляются более высокие токи. Низкое сопротивление элемента важно для обеспечения неограниченного протекания тока во время импульсов нагрузки.

Литий-ионная батарея не требует особого обслуживания, а это преимущество, на которое не может претендовать большинство других химикатов.Память отсутствует, и для продления срока службы батареи не требуется никаких плановых циклов. Кроме того, саморазряд менее чем наполовину по сравнению с NiCd, что делает литий-ионный аккумулятор хорошо подходящим для современных датчиков уровня топлива. Литий-ионные элементы при утилизации не причиняют большого вреда.

Несмотря на свои общие преимущества, литий-ионный аккумулятор также имеет свои недостатки. Он хрупкий и требует схемы защиты для обеспечения безопасной работы. Схема защиты, встроенная в каждую батарею, ограничивает пиковое напряжение каждой ячейки во время зарядки и предотвращает слишком низкое падение напряжения ячейки при разряде.Кроме того, контролируется температура ячейки, чтобы предотвратить перепады температур. Максимальный ток заряда и разряда ограничен от 1С до 2С. При соблюдении этих мер предосторожности возможность появления металлического литиевого покрытия из-за перезарядки практически исключается.

Старение является проблемой для большинства литий-ионных аккумуляторов, и многие производители умалчивают об этой проблеме. Некоторое ухудшение емкости заметно через год, независимо от того, используется аккумулятор или нет. Через два или, возможно, три года батарея часто выходит из строя.Следует отметить, что другие химические вещества также обладают возрастными дегенеративными эффектами. Это особенно актуально для NiMH при воздействии высоких температур окружающей среды.

Хранение батареи в прохладном месте замедляет процесс старения литий-ионных (и других химических компонентов). Производители рекомендуют хранить при температуре 15 ° C (59 ° F). Кроме того, при хранении аккумулятор должен быть частично заряжен.

Производители постоянно улучшают химический состав литий-ионных аккумуляторов.Новые и улучшенные химические комбинации вводятся каждые шесть месяцев или около того. При таком быстром прогрессе трудно оценить, насколько долго обновленная батарея устареет.

Самый экономичный литий-ионный аккумулятор с точки зрения соотношения стоимости и энергии — это цилиндрический аккумулятор 18650. Эта ячейка используется для мобильных вычислений и других приложений, не требующих ультратонкой геометрии. Если требуется более тонкий блок (менее 18 мм), призматический литий-ионный элемент является лучшим выбором. По сравнению с 18650 нет увеличения плотности энергии, однако стоимость получения той же энергии может удвоиться.

Для сверхтонкой геометрии (менее 4 мм) единственным выбором является литий-ионный полимер. Это самая дорогая система по соотношению затрат и энергии. Никакого выигрыша в плотности энергии нет, а долговечность уступает прочному элементу 18560.

Преимущества и ограничения литий-ионных аккумуляторов

Преимущества

Высокая плотность энергии — потенциал для еще более высоких мощностей.

Относительно низкий саморазряд — саморазряд вдвое меньше, чем у NiCd и NiMH.

Низкие эксплуатационные расходы — периодическая разрядка не требуется; нет памяти.

Ограничения

Требуется схема защиты — схема защиты ограничивает напряжение и ток. Батарея безопасна, если ее не спровоцировать.

Подвержен старению, даже если он не используется — хранение аккумулятора в прохладном месте и при 40-процентном уровне заряда снижает эффект старения.

Умеренный ток разряда.

В соответствии с правилами транспортировки — отправка больших партий литий-ионных аккумуляторов может подлежать нормативному контролю. Это ограничение не распространяется на ручные аккумуляторные батареи.

Дороговизна в производстве — примерно на 40% дороже, чем NiCd. Более совершенные технологии производства и замена редких металлов более дешевыми альтернативами, вероятно, снизят цену.

Не до конца зрелые — изменения в комбинациях металлов и химикатов влияют на результаты тестирования батарей, особенно с некоторыми быстрыми методами тестирования.

Рисунок 5: Преимущества и ограничения литий-ионных аккумуляторов

Литий-полимерный аккумулятор

Литий-полимерный аккумулятор отличается от других аккумуляторных систем типом используемого электролита. В оригинальной конструкции 1970-х годов используется сухой твердый полимерный электролит. Этот электролит напоминает пластиковую пленку, которая не проводит электричество, но позволяет обмениваться ионами (электрически заряженными атомами или группами атомов).Полимерный электролит заменяет традиционный пористый сепаратор, пропитанный электролитом.

Конструкция из сухого полимера предлагает упрощения в отношении изготовления, прочности, безопасности и геометрии тонкого профиля. Нет опасности воспламенения, поскольку не используется жидкий или гелеобразный электролит. При толщине ячеек всего один миллиметр (0,039 дюйма) конструкторы оборудования предоставлены самому себе в плане формы, формы и размера.

К сожалению, сухой литий-полимер имеет плохую проводимость.Внутреннее сопротивление слишком велико и не может обеспечить всплески тока, необходимые для современных устройств связи и раскрутки жестких дисков мобильного вычислительного оборудования. Нагревание ячейки до 60 ° C (140 ° F) и выше увеличивает проводимость, но это требование не подходит для портативных приложений.

Чтобы сделать небольшую литий-полимерную батарею проводящей, было добавлено немного гелеобразного электролита. Большинство коммерческих литий-полимерных аккумуляторов, используемых сегодня для мобильных телефонов, являются гибридными и содержат гелеобразный электролит.Правильный термин для этой системы — литий-ионный полимер. В рекламных целях большинство производителей аккумуляторов маркируют их просто как литий-полимерные. Поскольку гибридный литий-полимерный аккумулятор на сегодняшний день является единственным действующим полимерным аккумулятором для портативного использования, мы сосредоточимся на этой химии.

В чем же тогда разница между классическим литий-ионным и литий-ионным полимером с добавлением гелеобразного электролита? Хотя характеристики и производительность этих двух систем очень похожи, литий-ионный полимер уникален тем, что твердый электролит заменяет пористый сепаратор.Гелеобразный электролит просто добавляют для повышения ионной проводимости.

Технические трудности и задержки в массовом производстве задержали внедрение литий-ионных полимерных батарей. Кроме того, обещанное превосходство литий-ионного полимера еще не реализовано. Никаких улучшений в увеличении емкости не достигается — фактически, емкость немного меньше, чем у стандартной литий-ионной батареи. В настоящее время нет преимущества в стоимости. Основная причина перехода на литий-ионный полимер — это форм-фактор.Он позволяет использовать тонкую пластину с геометрической формой, которая востребована в высококонкурентной индустрии мобильных телефонов.

Преимущества и ограничения литий-ионных полимерных аккумуляторов

Преимущества

Очень низкий профиль — возможны батареи, которые напоминают профиль кредитной карты.

Гибкий форм-фактор — производители не ограничиваются стандартными форматами ячеек. При большом объеме можно экономично произвести любой разумный размер.

Легкий вес — гелеобразные, а не жидкие электролиты позволяют упростить упаковку, в некоторых случаях исключая металлическую оболочку.

Повышенная безопасность — более устойчивая к перезарядке; меньше шансов на утечку электролита.

Ограничения

Более низкая плотность энергии и меньшее количество циклов по сравнению с литий-ионными батареями — потенциал для улучшений существует.

Дороговизна в производстве — после массового производства литий-ионный полимер может иметь более низкую стоимость. Уменьшение схемы управления компенсирует более высокие производственные затраты.

Последнее обновление 21.03.2017

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык и избегать спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected] Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

Или перейти к другому архиву

вариантов первичных батарей — Battery University

Зная разницу в производительности

Угольно-цинковая батарея, также известная как угольно-цинковая батарея или батарея Лекланше, является одной из самых ранних и наименее дорогих первичных батарей. Он обеспечивает напряжение 1,5 В и часто поставляется с потребительскими устройствами. Первый углеродистый цинк, изобретенный Жоржем Лекланше в 1859 году, был влажным.

Щелочной.Щелочно-марганцевый, также известный как щелочной, представляет собой улучшенную версию угольно-цинковой батареи и обеспечивает напряжение 1,5 В. Льюис Урри (1927–2004) изобрел щелочь в 1949 году, работая в лаборатории Eveready Battery Company в Огайо, США.

Щелочь дает больше энергии при более высоких токах нагрузки, чем цинк-углерод. Кроме того, обычная бытовая щелочь дает примерно на 40 процентов больше энергии, чем средняя литий-ионная, но щелочь при нагрузке не так сильна, как литий-ионная. Щелочь имеет очень низкий саморазряд и не пропускает электролит, когда он истощен, как это происходит у старого угольно-цинкового сплава, но он не полностью герметичен.

Все первичные батареи при разряде выделяют небольшое количество газообразного водорода, и устройства с батарейным питанием должны обеспечивать вентиляцию. Повышение давления в ячейке может привести к разрыву уплотнения и возникновению коррозии. Это видно в виде перистой кристаллической структуры, которая может развиваться и распространяться на соседние части устройства и вызывать повреждения.

Дисульфид лития и железа (Li-FeS 2 ) — это новинка в семействе первичных батарей, обеспечивающая улучшенные характеристики по сравнению с щелочными батареями.Литиевые батареи обычно обеспечивают напряжение 3 В и выше, но Li-FeS 2 имеет напряжение 1,5 В для совместимости с форматами AA и AAA. Он имеет более высокую емкость и более низкое внутреннее сопротивление, чем щелочной. Это позволяет выдерживать средние и тяжелые нагрузки и идеально подходит для цифровых фотоаппаратов. Дополнительными преимуществами являются улучшенные характеристики при низких температурах, превосходная устойчивость к утечкам и низкий саморазряд, что позволяет хранить 15 лет при температуре окружающей среды.

Недостатками Li-FeS 2 являются более высокая цена и проблемы с транспортировкой из-за содержания металлического лития в аноде.В 2004 году Министерство транспорта США и Федеральное управление гражданской авиации (FAA) запретили массовые перевозки первичных литиевых батарей на пассажирских рейсах, но пассажиры авиакомпаний все еще могут перевозить их на борту, если не превышено выделенное содержание лития. Каждый Li-FeS 2 размера AA содержит 0,98 грамма лития; ограничение по воздуху первичных литиевых батарей составляет 2 грамма (8 граммов для литий-ионных аккумуляторных батарей). Это ограничивает каждого пассажира двумя батареями, но есть исключения, в которых можно перевозить 12 образцов батарей.(См. BU-704a: Доставка литиевых батарей по воздуху.)

Li-FeS 2 включает в себя предохранительные устройства в виде положительного теплового коэффициента (PTC), который ограничивает ток при высокой температуре и сбрасывается при нормальной температуре. Аккумулятор Li-FeS 2 нельзя подзарядить, как это возможно с помощью NiMH в форматах AA и AAA. Перезарядка, установка элемента в обратную сторону, перемешивание в разряженном элементе или добавление постороннего элемента может вызвать утечку или взрыв. (См. BU-304a: Меры безопасности при работе с литий-ионными батареями.)

На рисунках 1 и 2 сравнивается напряжение разряда и внутреннее сопротивление щелочного аккумулятора и Li-FeS 2 при импульсной нагрузке 50 мА. Интересны пологая кривая напряжения и низкое внутреннее сопротивление лития; щелочной показывает быстрое падение напряжения и постоянное увеличение сопротивления при использовании. Это сокращает время работы, особенно при повышенной нагрузке.

Рисунок 1: Напряжение и внутреннее сопротивление щелочи при разряде.
Внутреннее сопротивление увеличивается, вызывая падение напряжения.
Источник: Energizer
Рисунок 2: Напряжение и внутреннее сопротивление лития при разряде.
Внутреннее сопротивление остается низким, а напряжение остается неизменным.
Источник: Energizer


Литий-тионилхлорид (LiSOCI 2 или LTC) — одна из самых надежных литий-металлических батарей.Способность выдерживать высокие температуры и сильную вибрацию обеспечивает возможность горизонтального бурения, также известного как гидроразрыв. Говорят, что некоторые LTC работают при температуре от 0 ° C до 200 ° C (от 32 ° F до 392 ° F). Другое использование — в медицине и датчиках.

Обладая удельной энергией более 500 Втч / кг, LTC предлагает вдвое большую емкость, чем лучшие литий-ионные аккумуляторы. Номинальное напряжение 3,60 В / элемент; напряжение отключения в конце разряда составляет 3,00 В. Время выполнения не зависит только от емкости; тепловые условия и характер нагрузки также имеют значение.Постоянный ток более долговечен, чем импульсная нагрузка; явление, характерное для большинства аккумуляторов.

Как и щелочь, литий-тионилхлорид имеет относительно высокое сопротивление и может использоваться только при умеренных разрядных нагрузках. При хранении в течение некоторого времени между литиевым анодом и углеродным катодом образуется пассивирующий слой, который рассеивается при приложении нагрузки. Этот слой защищает аккумулятор, обеспечивая низкий саморазряд и длительный срок хранения. (См. BU-701: Как заправить аккумуляторы.)

LTC — один из самых мощных и мощных химических компонентов аккумуляторов и должен использоваться только обученными рабочими.По соображениям безопасности этот аккумулятор не используется в бытовых устройствах.

Литий-диоксид марганца (LiMnO 2 или Li-M) аналогичен LTC, но имеет меньшую удельную емкость и безопасен для использования в общественных местах. Напряжение составляет 3,0–3,30 В, а удельная энергия составляет около 280 Вт · ч / кг. Li-M имеет экономичную цену, имеет длительный срок службы и допускает умеренные нагрузки, но может обеспечивать высокие импульсные токи. Диапазон рабочих температур от -30 ° C до 60 ° C (от -22 ° F до 140 ° F). Типичные области применения — это измерительные приборы, медицинские устройства, датчики платы за проезд и камеры.

Литий диоксид серы (LiSo 2 ) — это первичная батарея с напряжением 2,8 В и плотностью энергии до 330 Вт · ч / кг. Он предлагает широкий температурный диапазон от -54 ° C до 71 ° C (от -65 ° F до 160 ° F) с прогнозируемым сроком хранения 5–10 лет при комнатной температуре. LiSo 2 стоит недорого в производстве и обычно используется в вооруженных силах. Иракская война использовала тонны этих батарей, но она уступает место более совершенным Li-M.

Примечание. Первичные литиевые батареи также известны как литий-металлические.Катод выполнен из углерода, а анод удерживает активный материал, противоположный литий-ионному, который имеет углеродный анод.

В таблице 3 приведены наиболее распространенные первичные батареи.

Первичная ячейка Щелочной Дисульфид железа лития
(LiFeS 2 )
Литий-тионилхлорид
(LiSOCI 2 или LTC)
Литий диоксид марганца
(LiMnO 2 или Li-M)
Литий диоксид серы
(LiSo 2 )
Удельная энергия 200Втч / кг 300Втч / кг 500Втч / кг 280Втч / кг 330Втч / кг
Напряжение 1.5 В 1,5 В 3,6–3,9 В 3–3,3 В 2,8 В
Мощность Низкий Умеренный Отлично Умеренный Умеренный
Пассивация N / A Умеренный Умеренный Умеренный Умеренный
Безопасность Хорошо Хорошо Меры предосторожности Хорошо Меры предосторожности
Цена Низкий Экономичный Промышленное Экономичный Промышленное
Срок годности 10 лет 15 лет 10–20 лет 10–20 лет 5–10 лет
Рабочая температура От 0 ° C до 60 ° C От 0 ° C до 60 ° C От -55 ° C до 85 ° C, кратковременно выше От -30 ° C до 60 ° C
некоторые позволяют от
от -55 ° C до 90 ° C
От -54 ° C до 71 ° C
Использование Бытовая техника Замена щелочи на более высокую мощность и длительное время работы Горизонтальное бурение (гидроразрыв).Не для бытового использования. Счетчики,
медицинских приборов, датчики дорожных сборов, камеры
Защита; заменяется на
LiMnO 2

Таблица 3: Сводная таблица общих первичных батарей. Значения оценены.

ВНИМАНИЕ: LTC и Li-M безопасны, но работники, работающие с этими батареями, должны быть знакомы с мерами безопасности, транспортировкой и утилизацией.Защищайте батареи от нагрева, короткого замыкания, а также физических или электрических повреждений.

Последнее обновление 21.06.2019

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык и избегать спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected] Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

Предыдущий урок

Следующий урок

Или перейти к другой артикуле

Аккумуляторы как источник питания

Аккумулятор для электромобиля с запасом хода 600 миль? Этот стартап утверждает, что сделал это

Производители электромобилей давно настаивают на прорыве в области аккумуляторных батарей, который улучшит дальность действия их автомобилей, а также продлит срок их службы.Швейцарский стартап Innolith заявляет, что его новые литий-ионные аккумуляторы высокой плотности способны именно на это.

Компания утверждает, что выпустила первую в мире аккумуляторную батарею на 1000 Втч / кг. (Ватт-часы на килограмм — это единица измерения, обычно используемая для описания плотности энергии в батареях.) Для сравнения: батареи, которые Tesla использует в своей модели 3 — так называемые 2170 ячеек — оцениваются примерно в 250 Втч / кг. ; компания планирует в конечном итоге довести этот показатель до 330 Втч / кг. Тем временем Министерство энергетики США финансирует программу по созданию аккумуляторных элементов мощностью 500 Втч / кг.Если утверждения Innolith подтвердятся, его батарея высокой плотности, возможно, просто перепрыгнула через эти цели.

«Это большой скачок», — сказал председатель Innolith Алан Гриншилдс в интервью The Verge. «По сути, это в четыре раза больше, чем нынешний уровень развития литий-ионных аккумуляторов … Примерно в три раза больше, чем принято считать следующим усовершенствованием лития. И это вдвое больше целевого показателя плотности энергии, установленного такими организациями, как Министерство энергетики США.Так что это большое дело ».

Батарея с такой плотностью могла бы обеспечить питание электромобиля на 1000 километров (621 милю) на одной зарядке. Это намного больше, чем у нынешних литий-ионных аккумуляторов, представленных сегодня на рынке. Аккумуляторы Tesla, которые производит Panasonic, могут поддерживать дальность действия 330 миль в самых дорогих моделях. Большинство крупных автопроизводителей стремятся к аналогичному диапазону своих электромобилей.

Другие, например производитель электромобилей Хенрик Фискер, возлагают надежды на технологию твердотельных аккумуляторов, которая, по их утверждениям, может обеспечить дальность действия до 500 миль.Большинство современных электромобилей питаются от «мокрых» литий-ионных аккумуляторов, в которых для перемещения энергии используются жидкие электролиты. В твердотельных аккумуляторах есть элементы, которые сделаны из твердого и «сухого» проводящего материала, но эта технология все еще застряла в лаборатории и не применяется в производстве.

Innolith по-прежнему использует «влажные» жидкие электролиты в своих литий-ионных батареях, но есть одно существенное отличие: компания заменяет органический (и легковоспламеняющийся) растворитель, содержащий электролиты, на неорганическое вещество, которое является более стабильным и менее горючим.

«вы можете вложить много энергии, не теряя устойчивости».

«Мы убираем органические материалы и заменяем их неорганическими или в основном солеподобными материалами, и это дает вам две вещи», — говорит Гриншилдс. «Во-первых, это избавляет вас от риска возгорания, поэтому, конечно, нечего гореть. И вторая часть заключается в том, что вы также избавились от наиболее реактивных компонентов в системе, что упрощает сборку батареи, в которую вы можете накапливать много энергии, при этом она не станет нестабильной.”

Органические материалы, содержащиеся в большинстве литий-ионных батарей, являются «основным источником побочных реакций», которые со временем могут потреблять активные материалы в батарее и превращать всю замкнутую систему в нечто «непродуктивное», он добавляет. Innolith утверждает, что его новая батарея решила эту проблему.

Innolith заявляет, что выведет на рынок свою инновационную новую батарею посредством первоначального пилотного производства в Германии, после чего последует лицензионное партнерство с крупными аккумуляторными и автомобильными компаниями.(Гриншилдс назвал Индию одной из стран, которая может быть заинтересована в технологиях Innolith.) Разработка и коммерциализация, вероятно, займут от трех до пяти лет, а это означает, что батарея компании не будет готова к выходу на рынок не раньше 2022 года.

Иннолит восстал из пепла банкротства Алево

Многое может случиться с настоящего момента, как хорошо знают Гриншилдс и генеральный директор Innolith Сергей Бучин. Ранее эти двое были главным техническим директором и главным операционным директором швейцарского производителя аккумуляторов Alevo соответственно.Эта компания объявила о банкротстве в 2017 году, сделав большую ставку на производственные мощности в Шарлотте, Северная Каролина. Даже вложение российского миллиардера, связанного с президентом Трампом, в конечном итоге не могло спасти компанию.

После подачи главы 11 Гриншилдс и Бучин организовали покупку интеллектуальной собственности Alevo и открыли головной офис в Базеле, Швейцария. Они также купили научно-исследовательский центр в Брухзале, Германия, где намереваются запустить свое опытное производство.

Компания не совсем теоретическая. Компания передала лицензию на технологию аккумуляторов компании PJM Grid, которая, согласно ее веб-сайту, «координирует движение оптовой электроэнергии во всех или некоторых частях Делавэра, Иллинойса, Индианы, Кентукки, Мэриленда, Мичигана, Нью-Джерси, Северной Каролины, Огайо, Пенсильвании, Теннесси, Вирджиния, Западная Вирджиния и округ Колумбия ». PJM проводила масштабные испытания батареи Innolith GridBank в Хагерстауне, штат Мэриленд.

«Это первый случай, когда перезаряжаемая литиевая батарея, использующая неорганические электролиты, была коммерчески внедрена», — сказал Гриншилдс.Мы надеемся, что это поможет укрепить репутацию Innolith по мере того, как он готовится запустить в производство свои высокоэнергетические аккумуляторы высокой плотности. В прошлом были заявления о крупных достижениях в области аккумуляторных технологий, но мало что можно сказать об этом. Руководители компании знают, что им необходимо будет самостоятельно проверить свои заявления, прежде чем кто-либо выйдет в очередь за их продуктами.

«Я думаю, что Томас Эдисон сказал, что величайшим негодяем был человек, утверждающий, что у них есть прорыв в области аккумуляторных батарей», — сказал Джулиан Таннер, директор по маркетингу Innolith.[Примечание: я не смог найти эту точную цитату, но это интервью 1883 года с Эдисоном, кажется, затрагивает более широкие вопросы о прорыве в области батарей.]

Тем не менее, Innolith не боится показаться негодяем, если это означает изменение будущего аккумуляторных технологий. «Мы действительно сделали прорыв в области аккумуляторов, который навсегда изменит ситуацию», — сказал Таннер.

Создание безопасных литий-ионных батарей для электромобилей: обзор

  • 1.

    Уиттингем, М.С.: Литиевые батареи и катодные материалы.Chem. Rev. 104 , 4271–4302 (2004). https://doi.org/10.1021/cr020731c

    CAS
    Статья
    PubMed

    Google Scholar

  • 2.

    Чжоу, Л.М., Чжан, К., Ху, З. и др .: Последние разработки и перспективы электродных материалов с иерархической структурой для литий-ионных аккумуляторов. Adv. Energy Mater. 8 , 1701415 (2018). https://doi.org/10.1002/aenm.201701415

    CAS
    Статья

    Google Scholar

  • 3.

    Wei, Q.L., Xiong, F.Y., Tan, S.S., и др .: Накопление энергии: пористые одномерные наноматериалы: дизайн, изготовление и применение в электрохимическом накоплении энергии. Adv. Матер. 29 , 1602300 (2017). https://doi.org/10.1002/adma.201770134

    CAS
    Статья

    Google Scholar

  • 4.

    Хао, Х., Ченг, X., Лю, З.У. и др.: Дорожная карта технологии тяговых аккумуляторных батарей в Китае: цели, воздействия и проблемы. Энергетическая политика 108 , 355–358 (2017).https://doi.org/10.1016/j.enpol.2017.06.011

    Артикул

    Google Scholar

  • 5.

    Дин, Ю.Л., Кано, З.П., Ю., А.П. и др .: Автомобильные литий-ионные аккумуляторы: текущее состояние и перспективы на будущее. Электрохим. Energ. Ред. 2 , 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z

    CAS
    Статья

    Google Scholar

  • 6.

    Wu, H.L., Zhang, Y.Б., Дэн, Ю.К. и др .: Легкая трехмерная структурированная матрица на основе углеродных нановолокон с высоким уровнем легирования азотом для анодов из металлического лития. Sci. China Mater. 62 , 87–94 (2019). https://doi.org/10.1007/s40843-018-9298-x

    CAS
    Статья

    Google Scholar

  • 7.

    Ли С., Цзян М.В., Се Ю. и др.: Разработка высокоэффективного металлического литиевого анода в жидких электролитах: проблемы и прогресс. Adv. Матер. 30 , 1706375 (2018).https://doi.org/10.1002/adma.201706375

    CAS
    Статья

    Google Scholar

  • 8.

    Li, W.D., Liu, X.M., Celio, H., et al .: Mn по сравнению с Al в слоистых оксидных катодах в литий-ионных батареях: всесторонняя оценка длительной цикличности. Adv. Energy Mater. 8 , 1703154 (2018). https://doi.org/10.1002/aenm.201703154

    CAS
    Статья

    Google Scholar

  • 9.

    Li, Y., Li, X.H., Wang, Z.X., и др .: Путь созревания Оствальда к богатому никелем слоистому катодному материалу с богатой кобальтом поверхностью для литий-ионной батареи. Sci. China Mater. 61 , 719–727 (2018). https://doi.org/10.1007/s40843-017-9162-3

    CAS
    Статья

    Google Scholar

  • 10.

    Лю, З.Х., Ю, Q., Чжао, Ю.Л. и др .: Оксиды кремния: многообещающее семейство анодных материалов для литий-ионных аккумуляторов. Chem.Soc. Ред. 48 , 285–309 (2019). https://doi.org/10.1039/c8cs00441b

    CAS
    Статья
    PubMed

    Google Scholar

  • 11.

    Дин, X.L., Лю, X.X., Хуанг, Y.Y. и др .: Повышенные электрохимические характеристики, которым способствуют монослойный графен и пустоты в кремниевых композитных анодных материалах. Nano Energy 27 , 647–657 (2016). https://doi.org/10.1016/j.nanoen.2016.07.031

    CAS
    Статья

    Google Scholar

  • 12.

    Но, Х.Дж., Юн, С., Юн, С.С. и др .: Сравнение структурных и электрохимических свойств слоистого Li [Ni x Co y Mnz] O 2 (x = 1/3, 0,5, 0,6, 0,7, 0,8 и 0,85) катодный материал для литий-ионных аккумуляторов. J. Источники энергии 233 , 121–130 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.063

    CAS
    Статья

    Google Scholar

  • 13.

    Цао, Г.З .: Синергия сольвента и соли предлагает безопасный путь к созданию высоковольтных литий-ионных аккумуляторов нового поколения.Sci. China Mater. 61 , 1360–1362 (2018). https://doi.org/10.1007/s40843-018-9296-y

    CAS
    Статья

    Google Scholar

  • 14.

    Пэн П., Цзян Ф.М .: Тепловая безопасность литий-ионных батарей с различными катодными материалами: численное исследование. Int. J. Heat Mass Transf. 103 , 1008–1016 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088

    CAS
    Статья

    Google Scholar

  • 15.

    Рен, Д.С., Фенг, X.N., Лу, Л.Г. и др .: Модель литий-ионного аккумулятора с электрохимико-термической связью с избыточным зарядом и тепловым разгоном. J. Источники энергии 364 , 328–340 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.035

    CAS
    Статья

    Google Scholar

  • 16.

    Ши, Дж. Л., Фанг, Л. Ф., Ли, Х. и др .: Улучшенные термические и электрохимические характеристики каркаса сепаратора из модифицированного ПММА PE, полученного с помощью инициированного допамином ATRP для литий-ионных батарей.J. Membr. Sci. 437 , 160–168 (2013). https://doi.org/10.1016/j.memsci.2013.03.006

    CAS
    Статья

    Google Scholar

  • 17.

    Равдел Б., Абрахам К.М., Гитценданнер Р. и др .: Термическая стабильность электролитов литий-ионных аккумуляторов. J. Источники энергии 119 (120/121), 805–810 (2003). https://doi.org/10.1016/s0378-7753(03)00257-x

    Артикул

    Google Scholar

  • 18.

    Ли, Дж. К., Ма, К., Чи, М. Ф. и др.: Твердый электролит: ключ к высоковольтным литиевым батареям. Adv. Energy Mater. 5 , 1401408 (2015). https://doi.org/10.1002/aenm.201401408

    CAS
    Статья

    Google Scholar

  • 19.

    Jhu, C.Y., Wang, Y.W., Shu, C.M., et al .: Опасность теплового взрыва на литий-ионных батареях 18650 с адиабатическим калориметром VSP2. J. Hazard. Матер. 192 , 99–107 (2011).https://doi.org/10.1016/j.jhazmat.2011.04.097

    CAS
    Статья
    PubMed

    Google Scholar

  • 20.

    Фенг, X.N., Фанг, М., Хе, X.M., и др .: Характеристики теплового разгона крупноформатной призматической литий-ионной батареи с использованием калориметрии с расширенной объемной скоростью ускорения. J. Источники энергии 255 , 294–301 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.005

    CAS
    Статья

    Google Scholar

  • 21.

    Парк, С., Юнг, Д.: Расположение аккумуляторных элементов и влияние теплоносителя на паразитное энергопотребление и распределение температуры элементов в гибридном электромобиле. J. Источники энергии 227 , 191–198 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.039

    CAS
    Статья

    Google Scholar

  • 22.

    Zhu, L.T., Sun, Z.C., Dai, H.F., et al .: Новая методология моделирования гистерезиса напряжения холостого хода для LiFePO 4 батарей, основанная на адаптивной дискретной модели Preisach.Прил. Энергия 155 , 91–109 (2015). https://doi.org/10.1016/j.apenergy.2015.05.103

    CAS
    Статья

    Google Scholar

  • 23.

    Ван, X.Y., Вэй, X.Z., Дай, Х.Ф .: Оценка состояния литий-ионных батарей на основе сопротивления переносу заряда с учетом различных температур и состояния заряда. J. Хранение энергии 21 , 618–631 (2019). https://doi.org/10.1016/j.est.2018.11.020

    Артикул

    Google Scholar

  • 24.

    Венгер, М., Валлер, Р., Лоренц, В. Р. Х. и др.: Исследование обнаружения газа в больших литий-ионных аккумуляторных системах для раннего обнаружения неисправностей и повышения безопасности. В: IECON 2014—40-я ежегодная конференция Общества промышленной электроники IEEE 29 октября — 1 ноября 2014 г. IEEE, Даллас, Техас, США. Нью-Йорк, США. https://doi.org/10.1109/iecon.2014.7049366

  • 25.

    Wandt, J., Marino, C., Gasteiger, H.A., и др .: Электронная парамагнитная резонансная спектроскопия Operando — образование замшелого лития на литиевых анодах во время циклического заряда-разряда.Energy Environ. Sci. 8 , 1358–1367 (2015). https://doi.org/10.1039/c4ee02730b

    CAS
    Статья

    Google Scholar

  • 26.

    Хси, А.Г., Бхадра, С., Херцберг, Б.Дж., и др .: Электрохимико-акустическое время полета: корреляция физической динамики с зарядом аккумулятора и здоровьем. Energy Environ. Sci. 8 , 1569–1577 (2015). https://doi.org/10.1039/c5ee00111k

    CAS
    Статья

    Google Scholar

  • 27.

    Шарма, Н., Петерсон, В.К., Элкомб, М.М. и др .: Структурные изменения в коммерческой литий-ионной батарее во время электрохимического циклирования: нейтронографическое исследование in situ. J. Источники энергии 195 , 8258–8266 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.114

    CAS
    Статья

    Google Scholar

  • 28.

    Скросати, Б .: История литиевых батарей. J. Solid State Electrochem. 15 , 1623–1630 (2011).https://doi.org/10.1007/s10008-011-1386-8

    CAS
    Статья

    Google Scholar

  • 29.

    Ли, X.Y., Ван, З.П .: Новый метод диагностики неисправностей литий-ионных аккумуляторных батарей электромобилей. Измерение 116 , 402–411 (2018). https://doi.org/10.1016/j.measurement.2017.11.034

    Артикул

    Google Scholar

  • 30.

    Ван, Ю., Гао, К., Ван, Г.Х. и др.: Обзор состояния исследований и ключевых технологий управления температурным режимом аккумуляторных батарей и их повышенной безопасности. Int. J. Energy Res. 42 , 4008–4033 (2018). https://doi.org/10.1002/er.4158

    Артикул

    Google Scholar

  • 31.

    Голубков А.В., Фукс Д .: Тепловой разгоном: причины и последствия на клеточном уровне. В: Thaler, A., Watzenig, D. (eds.) Automotive Battery Technology, стр. 37–51. Спрингер, Чам (2014). https: // doi.org / 10.1007 / 978-3-319-02523-0_3

    Google Scholar

  • 32.

    Вен, Дж. У., Ю. Ю., Чен, К. Х .: Обзор вопросов безопасности литий-ионных батарей: существующие проблемы и возможные решения. Матер. Экспресс 2 , 197–212 (2012). https://doi.org/10.1166/mex.2012.1075

    CAS
    Статья

    Google Scholar

  • 33.

    Чжан, Р., Чжэн, Ю., Дуань, Дж. И др .: Аккумуляторы для электромобилей: возможности и проблемы.Science 358 , 10–13 (2017). (спецвыпуск)

    Артикул

    Google Scholar

  • 34.

    Мингао, О., Рен, DS, Лу, LG и др .: Анализ замирания емкости, вызванной перезарядом, для литий-ионных аккумуляторов большого формата с Li y Ni 1/3 Co 1 / 3 Mn 1/3 O 2 + Li y Mn 2 O 4 композитный катод. J. Источники энергии 279 , 626–635 (2015).https://doi.org/10.1016/j.jpowsour.2015.01.051

    CAS
    Статья

    Google Scholar

  • 35.

    Цзэн Ю.К., Ву К., Ван Д.Ю. и др.: Исследование перезарядки литий-ионных полимерных батарей. J. Источники энергии 160 , 1302–1307 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.009

    CAS
    Статья

    Google Scholar

  • 36.

    Ирияма, Ю., Йокояма, М., Яда, С. и др.: Приготовление тонких пленок LiFePO 4 импульсным лазерным осаждением и их электрохимические свойства. Электрохим. Solid-State Lett. 7 , A340 (2004). https://doi.org/10.1149/1.1795052

    CAS
    Статья

    Google Scholar

  • 37.

    Осаки Т., Киши Т., Кубоки Т. и др .: Реакция перезаряда литий-ионных аккумуляторов. J. Источники энергии 146 , 97–100 (2005). https://doi.org/10.1016 / j.jpowsour.2005.03.105

    CAS
    Статья

    Google Scholar

  • 38.

    Wu, L.J., Nam, K.W., Wang, X.J., и др .: Структурное происхождение вызванной перезарядкой термической нестабильности Ni-содержащих слоистых катодов для литиевых батарей с высокой плотностью энергии. Chem. Матер. 23 , 3953–3960 (2011). https://doi.org/10.1021/cm201452q

    CAS
    Статья

    Google Scholar

  • 39.

    Ван Х.Ю., Тан А.Д., Хуанг К.Л .: Выделение кислорода в перезаряженном Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 электрод и кинетика его термического анализа. Подбородок. J. Chem. 29 , 1583–1588 (2011). https://doi.org/10.1002/cjoc.201180284

    CAS
    Статья

    Google Scholar

  • 40.

    Юань, К.Ф., Чжао, Ф.Г., Ван, В.Д. и др.: Исследование отказов перезаряда литий-ионных аккумуляторов.Электрохим. Acta 178 , 682–688 (2015). https://doi.org/10.1016/j.electacta.2015.07.147

    CAS
    Статья

    Google Scholar

  • 41.

    Zheng, HH, Sun, QN, Liu, G., et al .: Корреляция между поведением при растворении и характеристиками электрохимического цикла для LiNi 1/3 Co 1/3 Mn 1/3 О 2 ячеек. J. Источники энергии 207 , 134–140 (2012). https: // doi.org / 10.1016 / j.jpowsour.2012.01.122

    CAS
    Статья

    Google Scholar

  • 42.

    Wu, X.W., Wang, Z.X., Li, X.H. и др .: Влияние дифтор (оксалат) бората лития и гептаметилдисилазана с различными концентрациями на циклические характеристики LiMn 2 O 4 . J. Источники энергии 204 , 133–138 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.012

    CAS
    Статья

    Google Scholar

  • 43.

    Abraham, D.P., Spila, T., Furczon, M.M., et al .: Доказательства накопления переходных металлов на состаренных графитовых анодах с помощью SIMS. Электрохим. Solid-State Lett. 11 , А226 (2008). https://doi.org/10.1149/1.2987680

    CAS
    Статья

    Google Scholar

  • 44.

    Шарма, Н., Петерсон, В.К .: Перезарядка литий-ионной батареи: влияние на отрицательный электрод Li x C6, определенное методом дифракции нейтронов на месте.J. Источники энергии 244 , 695–701 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.019

    CAS
    Статья

    Google Scholar

  • 45.

    Li, Z., Huang, J., Yann Liaw, B., et al .: Обзор осаждения лития в литий-ионных и литий-металлических вторичных батареях. J. Источники энергии 254 , 168–182 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.099

    CAS
    Статья

    Google Scholar

  • 46.

    Abraham, D.P., Roth, E.P., Kostecki, R., et al .: Диагностическое обследование подвергшихся термическому износу мощных литий-ионных элементов. J. Источники энергии 161 , 648–657 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.088

    CAS
    Статья

    Google Scholar

  • 47.

    Цинт, В., фон Людерс, К., Хофманн, М., и др .: Литиевое покрытие в литий-ионных батареях при температурах ниже окружающей среды исследовано методом нейтронографии на месте.J. Источники энергии 271 , 152–159 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.168

    CAS
    Статья

    Google Scholar

  • 48.

    Ли, Х.Ф., Гао, Дж.К., Чжан, С.Л .: Влияние переразряда на набухание и характеристики перезарядки литий-ионных элементов. Подбородок. J. Chem. 26 , 1585–1588 (2008). https://doi.org/10.1002/cjoc.2008

    CAS
    Статья

    Google Scholar

  • 49.

    Zhang, L.L., Ma, Y.L., Cheng, X.Q., и др .: Механизм уменьшения емкости во время длительного циклирования переразряженной LiCoO 2 / батарея мезоуглеродных микрогранул. J. Источники энергии 293 , 1006–1015 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.040

    CAS
    Статья

    Google Scholar

  • 50.

    Чжао, М.С., Кариуки, С., Девальд, Х.Д. и др .: Электрохимическая стабильность меди в электролитах литий-ионных аккумуляторов.J. Electrochem. Soc. 147 , 2874 (2000). https://doi.org/10.1149/1.13

    CAS
    Статья

    Google Scholar

  • 51.

    Гуо Р., Лу Л.Г., Оуян М.Г. и др .: Механизм всего процесса переразряда и внутреннего короткого замыкания, вызванного переразрядкой, в литий-ионных батареях. Sci. Отчет 6 , 30248 (2016). https://doi.org/10.1038/srep30248

    CAS
    Статья
    PubMed
    PubMed Central

    Google Scholar

  • 52.

    Шу Дж., Шуй М., Сюй Д. и др.: Сравнительное исследование поведения катодных материалов при переразряде литий-ионных аккумуляторов. J. Solid State Electrochem. 16 , 819–824 (2012). https://doi.org/10.1007/s10008-011-1484-7

    CAS
    Статья

    Google Scholar

  • 53.

    Шу, Дж., Шуй, М., Хуанг, Ф.Т. и др .: Новый взгляд на оксид лития-кобальта в широком диапазоне напряжений для литий-ионных аккумуляторов. J. Phys. Chem.С 114 , 3323–3328 (2010). https://doi.org/10.1021/jp

    4b

    CAS
    Статья

    Google Scholar

  • 54.

    Перамунаж, Д .: Получение и электрохимические характеристики сверхлитированной шпинели LiMn 2 O 4 . J. Electrochem. Soc. 145 , 1131 (1998). https://doi.org/10.1149/1.1838428

    CAS
    Статья

    Google Scholar

  • 55.

    Чжу, Дж. Г., Сан, З. К., Вэй, X. З. и др .: Экспериментальные исследования метода импульсного нагрева переменным током для автомобильных литий-ионных аккумуляторов большой мощности при отрицательных температурах. J. Источники энергии 367 , 145–157 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.063

    CAS
    Статья

    Google Scholar

  • 56.

    Jiang, J.C., Ruan, H.J., Sun, B.X., et al .: Уменьшенная низкотемпературная электротермическая сопряженная модель для литий-ионных батарей.Прил. Энергия 177 , 804–816 (2016). https://doi.org/10.1016/j.apenergy.2016.05.153

    CAS
    Статья

    Google Scholar

  • 57.

    Чжан, С.С., Сюй, К., Джоу, Т.Р .: Исследование электрохимического импеданса при низких температурах литий-ионных аккумуляторов. Электрохим. Acta 49 , 1057–1061 (2004). https://doi.org/10.1016/j.electacta.2003.10.016

    CAS
    Статья

    Google Scholar

  • 58.

    Эррейре С., Хюше О., Баруссо С. и др.: Новые литий-ионные электролиты для низкотемпературных применений. J. Power Sources 97 (98), 576–580 (2001). https://doi.org/10.1016/s0378-7753(01)00670-x

    Артикул

    Google Scholar

  • 59.

    Чжу, Дж. Г., Сан, З. К., Вэй, X. З. и др .: Метод нагрева литий-ионных батарей переменным током от отрицательных температур. Int. J. Energy Res. 40 , 1869–1883 ​​(2016).https://doi.org/10.1002/er.3576

    CAS
    Статья

    Google Scholar

  • 60.

    Смарт, М.С., Ратнакумар, Б.В., Уитканак, Л.Д., и др .: Улучшенные низкотемпературные характеристики литий-ионных элементов с электролитами на основе четвертичных карбонатов. J. Источники энергии 119 (120/121), 349–358 (2003). https://doi.org/10.1016/s0378-7753(03)00154-x

    Артикул

    Google Scholar

  • 61.

    Сенишин А., Мюльбауэр М.Дж., Долотко О. и др .: Низкотемпературные характеристики литий-ионных аккумуляторов: поведение литиированного графита. J. Источники энергии 282 , 235–240 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.008

    CAS
    Статья

    Google Scholar

  • 62.

    Орсини, Ф., дю Паскье, А., Бодуан, Б. и др .: Наблюдение с помощью сканирующей электронной микроскопии (СЭМ) на границе раздела в пластиковых литиевых батареях.J. Power Sources 76 , 19–29 (1998). https://doi.org/10.1016/s0378-7753(98)00128-1

    CAS
    Статья

    Google Scholar

  • 63.

    Ким, Г.Х., Песаран, А., Спотниц, Р .: Трехмерная модель термического воздействия для литий-ионных элементов. J. Источники энергии 170 , 476–489 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.018

    CAS
    Статья

    Google Scholar

  • 64.

    Малеки, Х .: Исследования термостабильности литий-ионных элементов и компонентов. J. Electrochem. Soc. 146 , 3224 (1999). https://doi.org/10.1149/1.13

    CAS
    Статья

    Google Scholar

  • 65.

    Чжао, Р., Чжан, С.Дж., Лю, Дж. И др.: Обзор методов улучшения тепловых характеристик литий-ионной батареи: модификация электродов и система терморегулирования. J. Источники энергии 299 , 557–577 (2015).https://doi.org/10.1016/j.jpowsour.2015.09.001

    CAS
    Статья

    Google Scholar

  • 66.

    Лю, штаб-квартира, Вэй, З.Б., Хе, В.Д. и др .: Тепловые проблемы литий-ионных аккумуляторов и недавний прогресс в системах управления температурным режимом аккумуляторов: обзор. Energy Convers. Manag. 150 , 304–330 (2017). https://doi.org/10.1016/j.enconman.2017.08.016

    CAS
    Статья

    Google Scholar

  • 67.

    Фэн X.N., Оуян М.Г., Лю X. и др.: Механизм теплового разгона литий-ионной батареи для электромобилей: обзор. Материя хранения энергии. 10 , 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013

    Артикул

    Google Scholar

  • 68.

    Даути, Д.Х., Крафтс, К.К .: FreedomCAR: руководство по испытаниям на злоупотребление системой накопления электроэнергии для электрических и гибридных электромобилей. Выключенный. Sci. Tech.Инф. (2006). https://doi.org/10.2172/889934

    Артикул

    Google Scholar

  • 69.

    Myung, S.T., Maglia, F., Park, K.J., et al .: Богатые никелем слоистые катодные материалы для автомобильных литий-ионных аккумуляторов: достижения и перспективы. ACS Energy Lett. 2 , 196–223 (2017). https://doi.org/10.1021/acsenergylett.6b00594

    CAS
    Статья

    Google Scholar

  • 70.

    Jiang, J., Dahn, J.R .: ARC-исследования термической стабильности трех различных катодных материалов: LiCoO 2 ; Li [Ni 0,1 Co 0,8 Mn 0,1 ] O 2 ; и LiFePO 4 в электролитах LiPF6 и LiBoB EC / DEC. Электрохим. Commun. 6 , 39–43 (2004). https://doi.org/10.1016/j.elecom.2003.10.011

    CAS
    Статья

    Google Scholar

  • 71.

    Андерссон А.: Извлечение / введение лития в LiFePO 4 : исследование дифракции рентгеновских лучей и мессбауэровской спектроскопии. Ионика твердого тела 130 , 41–52 (2000). https://doi.org/10.1016/s0167-2738(00)00311-8

    CAS
    Статья

    Google Scholar

  • 72.

    Рёдер П., Баба Н., Фридрих К.А. и др .: Влияние лития, содержащего лития 0 FePO 4 на разложение электролита на основе LiPF 6 , исследовано с ускорением. калориметрия.J. Источники энергии 236 , 151–157 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.044

    CAS
    Статья

    Google Scholar

  • 73.

    Дан, Дж., Фуллер, Э., Обровац, М. и др .: Термическая стабильность Li x CoO 2 , Li x NiO 2 и λ-MnO 2 и последствия для безопасности литий-ионных элементов. Ионика твердого тела 69 , 265–270 (1994). https://doi.org/10.1016 / 0167-2738 (94)

    -4

    CAS
    Статья

    Google Scholar

  • 74.

    Цао, Х., Ся, Б.Дж., Сюй, Н.Х. и др .: Структурные и электрохимические характеристики катодных материалов никелата лития, легированных Co и Al, для литий-ионных батарей. J. Alloy. Compd. 376 , 282–286 (2004). https://doi.org/10.1016/j.jallcom.2004.01.008

    CAS
    Статья

    Google Scholar

  • 75.

    Ябуучи, Н., Озуку, Т .: Новый литиевый вставной материал из LiCo 1/3 Ni 1/3 Mn 1/3 O 2 для современных литий-ионных батарей. J. Источники энергии 119 (120/121), 171–174 (2003). https://doi.org/10.1016/S0378-7753(03)00173-3

    CAS
    Статья

    Google Scholar

  • 76.

    Bak, SM, Hu, EY, Zhou, YN, et al .: Структурные изменения и термическая стабильность заряженного LiNi x Mn y Co z O 2 катодных материалов изучено комбинированным методом. рентгеновская дифрактометрия и масс-спектроскопия с временным разрешением in situ.ACS Appl. Матер. Интерфейсы. 6 , 22594–22601 (2014). https://doi.org/10.1021/am506712c

    CAS
    Статья
    PubMed

    Google Scholar

  • 77.

    Лян, С.П., Конг, Ф.Т., Лонго, Р.К. и др .: Выявление причин нестабильности в Ni-Ni-Rich LiNi 1-2x Co x Mn x O 2 ( NCM) катодные материалы. J. Phys. Chem. C 120 , 6383–6393 (2016). https://doi.org/10.1021/acs.jpcc.6b00369

    CAS
    Статья

    Google Scholar

  • 78.

    Wang, YD, Jiang, JW, Dahn, JR: Реакционная способность делитированного Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 , Li ( Ni 0,8 Co 0,15 Al 0,05 ) O 2 или LiCoO 2 с неводным электролитом. Электрохим. Commun. 9 , 2534–2540 (2007). https://doi.org/10.1016/j.elecom.2007.07.033

    CAS
    Статья

    Google Scholar

  • 79.

    Хван, С., Ким, С.М., Бак, С.М. и др .: Исследование локальной деградации и термической стабильности заряженных катодных материалов на основе никеля с помощью электронной микроскопии в реальном времени. ACS Appl. Матер. Интерфейсы. 6 , 15140–15147 (2014). https://doi.org/10.1021/am503278f

    CAS
    Статья
    PubMed

    Google Scholar

  • 80.

    Bang, HJ, Joachin, H., Yang, H., et al .: Вклад структурных изменений LiNi 0,8 Co 0,15 Al 0,05 O 2 катодов на экзотермические реакции в Li-ion клетки. J. Electrochem. Soc. 153 , A731 (2006). https://doi.org/10.1149/1.2171828

    CAS
    Статья

    Google Scholar

  • 81.

    Belharouak, I., Lu, W.Q., Liu, J., et al .: Температурное поведение делитированного Li (Ni 0.8 Co 0,15 Al 0,05 ) O 2 и Li 1,1 (Ni 1/3 Co 1/3 Mn 1/3 ) 0,9 O 2 порошков. J. Источники энергии 174 , 905–909 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.092

    CAS
    Статья

    Google Scholar

  • 82.

    Hua, WB, Schwarz, B., Knapp, M., et al .: (Де) механизм литирования иерархически слоистого LiNi 1/3 Co 1/3 Mn 1/3 О 2 катодов при высоковольтном циклировании.J. Electrochem. Soc. 166 , A5025 – A5032 (2019). https://doi.org/10.1149/2.0051903jes

    CAS
    Статья

    Google Scholar

  • 83.

    Чен, Ж., Рен, Й., Ли, Э. и др .: Исследование термического разложения Li 1 − x (Ni 1/3 Mn 1/3 Co 1/3 ) 0,9 O 2 с использованием дифракции рентгеновских лучей высоких энергий in situ. Adv. Energy Mater. 3 , 729–736 (2013). https: // doi.org / 10.1002 / aenm.201201059

    CAS
    Статья

    Google Scholar

  • 84.

    Миллер Д.Дж., Профф К., Вен Дж.Г. и др.: Наблюдение за эволюцией микроструктуры в частицах катодного оксида литиевых батарей с помощью in situ электронной микроскопии. Adv. Energy Mater. 3 , 1098–1103 (2013). https://doi.org/10.1002/aenm.201300015

    CAS
    Статья

    Google Scholar

  • 85.

    Кондраков, А.О., Шмидт, А., Сюй, Дж. И др .: Анизотропная деформация решетки и механическая деградация катодных материалов NCM с высоким и низким содержанием никеля для литий-ионных аккумуляторов. J. Phys. Chem. С 121 , 3286–3294 (2017). https://doi.org/10.1021/acs.jpcc.6b12885

    CAS
    Статья

    Google Scholar

  • 86.

    Дин, Ю., Му, Д. Б., Ву, Б. Р. и др .: Последние достижения в области материалов положительных электродов из слоистого оксида с высоким содержанием никеля, используемых в литий-ионных батареях для электромобилей.Прил. Энергия 195 , 586–599 (2017). https://doi.org/10.1016/j.apenergy.2017.03.074

    CAS
    Статья

    Google Scholar

  • 87.

    Луо, В.Б., Чжоу, Ф., Чжао, XM и др .: Синтез, характеристика и термическая стабильность LiNi 1/3 Mn 1/3 Co 1/3 − z Mg z O 2 , LiNi 1/3 − z Mn 1/3 Co 1/3 Mg z O 2 и LiNi 1/3 Mn 1 / 3 − z Co 1/3 Mg z O 2 .Chem. Матер. 22 , 1164–1172 (2010). https://doi.org/10.1021/cm

    3n

    CAS
    Статья

    Google Scholar

  • 88.

    Сан, Ю.К., Ким, Д.Х., Юн, К.С. и др .: Новый катодный материал с градиентом концентрации для высокоэнергетических и безопасных литий-ионных батарей. Adv. Funct. Матер. 20 , 485–491 (2010). https://doi.org/10.1002/adfm.200

    0

    CAS
    Статья

    Google Scholar

  • 89.

    Цзэн, X.Q., Чжан, К., Лу, Дж. И др .: Стабилизация мощного и мощного катода на никелевой основе для литий-ионных аккумуляторов. Chem 4 , 690–704 (2018). https://doi.org/10.1016/j.chempr.2017.12.027

    CAS
    Статья

    Google Scholar

  • 90.

    Kam, K.C., Doeff, M.M .: Алиовалентное замещение титана в слоистых смешанных оксидах Li – Ni – Mn – Co для литиевых батарей. J. Mater. Chem. 21, , 9991 (2011).https://doi.org/10.1039/c0jm04193a

    CAS
    Статья

    Google Scholar

  • 91.

    Liu, WM, Hu, GR, Peng, ZD и др .: Синтез сферического LiNi 0,8 Co 0,15 Al 0,05 O 2 катодных материалов для литий-ионных аккумуляторов метод кристаллизации, контролируемый совместным окислением. Подбородок. Chem. Lett. 22 , 1099–1102 (2011). https://doi.org/10.1016/j.cclet.2011.01.041

    CAS
    Статья

    Google Scholar

  • 92.

    Li, X., Xie, Z.W., Liu, W.J. и др .: Влияние легирования фтором на структуру, химию поверхности и электрохимические характеристики LiNi 0,8 Co 0,15 Al 0,05 O 2 . Электрохим. Acta 174 , 1122–1130 (2015). https://doi.org/10.1016/j.electacta.2015.06.099

    CAS
    Статья

    Google Scholar

  • 93.

    Ван, Й., Гу, Х.Т., Сонг, Дж. Х. и др.: Подавление восстановления Mn богатых литием катодов на основе Mn с помощью F-легирования для усовершенствованных литий-ионных аккумуляторов.J. Phys. Chem. C 122 , 27836–27842 (2018). https://doi.org/10.1021/acs.jpcc.8b08669

    CAS
    Статья

    Google Scholar

  • 94.

    Rastgoo-Deylami, M., Javanbakht, M., Omidvar, H .: Повышенные характеристики слоистого Li 1,2 Mn 0,54 Ni 0,13 Co 0,13 O 2 катодный материал Литий-ионные аккумуляторы с наноразмерным покрытием поверхности анатазом, легированным фтором TiO 2 .Ионика твердого тела 331 , 74–88 (2019). https://doi.org/10.1016/j.ssi.2018.12.025

    CAS
    Статья

    Google Scholar

  • 95.

    Dai, GL, Du, HJ, Wang, SS и др .: Улучшенные электрохимические характеристики LiNi 0,8 Co 0,15 Al 0,05 O 2 с ультратонким и контролируемым по толщине TiO 2 с помощью технологии атомно-слоистого осаждения. RSC Adv. 6 , 100841–100848 (2016).https://doi.org/10.1039/c6ra21903a

    CAS
    Статья

    Google Scholar

  • 96.

    Мюнг, С.Т., Изуми, К., Комаба, С. и др .: Роль покрытия оксидом алюминия на частицах Li – Ni – Co – Mn – O в качестве материала положительного электрода для литий-ионных аккумуляторов. Chem. Матер. 17 , 3695–3704 (2005). https://doi.org/10.1021/cm050566s

    CAS
    Статья

    Google Scholar

  • 97.

    Yoon, WS, Nam, KW, Jang, D., и др .: Структурное исследование влияния покрытия на термическую стабильность заряженного LiNi с покрытием MgO 0,8 Co 0,2 O 2 катодов исследованы in situ XRD. J. Источники энергии 217 , 128–134 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.028

    CAS
    Статья

    Google Scholar

  • 98.

    Ли С.М., О, С.Х., Ан, Дж. П. и др .: Электрохимические свойства ZrO 2 LiNi 0 с покрытием.8 Co 0,2 O 2 катодные материалы. J. Источники энергии 159 , 1334–1339 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.035

    CAS
    Статья

    Google Scholar

  • 99.

    Мэн, X.B., Ян, X.Q., Sun, X.L .: Новые применения осаждения атомных слоев для исследований литий-ионных аккумуляторов. Adv. Матер. 24 , 3589–3615 (2012). https://doi.org/10.1002/adma.201200397

    CAS
    Статья
    PubMed

    Google Scholar

  • 100.

    Ян П.Ф., Чжэн Дж.М., Чжан Х.Ф. и др.: Исследование функциональных возможностей слоя покрытия Al 2 O 3 на катоде от атомных до наноразмеров для улучшения характеристик батареи. Chem. Матер. 28 , 857–863 (2016). https://doi.org/10.1021/acs.chemmater.5b04301

    CAS
    Статья

    Google Scholar

  • 101.

    Лю, У., О, П., Лю, X.E. и др .: Богатый никелем слоистый оксид переходного металла лития для высокоэнергетических литий-ионных батарей.Энгью. Chem. Int. Эд. 54 , 4440–4457 (2015). https://doi.org/10.1002/anie.201409262

    CAS
    Статья

    Google Scholar

  • 102.

    Manthiram, A., Knight, J.C., Myung, S.T. и др .: Катоды из слоистого оксида с высоким содержанием никеля и лития: прогресс и перспективы. Adv. Energy Mater. 6 , 1501010 (2016). https://doi.org/10.1002/aenm.201501010

    CAS
    Статья

    Google Scholar

  • 103.

    Sun, YK, Myung, ST, Shin, HS и др .: Новый Li [(Ni 0,8 Co 0,2 ) 0,8 (Ni 0,5 Mn 0,5 ) 0,2 ] O 2 через соосаждение в качестве материала положительного электрода для литиевых вторичных батарей. J. Phys. Chem. B 110 , 6810–6815 (2006). https://doi.org/10.1021/jp0571473

    CAS
    Статья
    PubMed

    Google Scholar

  • 104.

    Sun, Y.K., Bae, Y.C., Myung, S.T .: Синтез и электрохимические свойства слоистого LiNi 1/2 Mn 1/2 O 2 , полученного соосаждением. J. Appl. Электрохим. 35 , 151–156 (2005). https://doi.org/10.1007/s10800-004-6197-5

    CAS
    Статья

    Google Scholar

  • 105.

    Сан, Ю.К., Мён, С.Т., Парк, Б.С. и др .: Синтез сферических нано- и микромасштабных частиц ядро-оболочка Li [(Ni 0.8 Co 0,1 Mn 0,1 ) 1 − x (Ni 0,5 Mn 0,5 ) x ] O 2 и их применения в литиевых батареях. Chem. Матер. 18 , 5159–5163 (2006). https://doi.org/10.1021/cm061746k

    CAS
    Статья

    Google Scholar

  • 106.

    Сан, Ю.К., Чен, З.Х., Но, Х.Дж. и др.: Наноструктурированные высокоэнергетические катодные материалы для усовершенствованных литиевых батарей.Nat. Матер. 11 , 942–947 (2012). https://doi.org/10.1038/nmat3435

    CAS
    Статья

    Google Scholar

  • 107.

    Park, KJ, Choi, MJ, Maglia, F. и др .: Градиент концентрации высокой емкости Li [Ni 0,865 Co 0,120 Al 0,015 ] O 2 катод для лития -ионные батареи. Adv. Energy Mater. 8 , 1703612 (2018). https://doi.org/10.1002/aenm.201703612

    CAS
    Статья

    Google Scholar

  • 108.

    Лу, Дж., Ву, Т.П., Амин, К .: Современные методы определения характеристик передовых литий-ионных аккумуляторов. Nat. Энергия 2 , 17011 (2017). https://doi.org/10.1038/nenergy.2017.11

    CAS
    Статья

    Google Scholar

  • 109.

    Kim, H., Kim, MG, Jeong, HY, et al .: Новый метод покрытия для уменьшения деградации поверхности LiNi 0,6 Co 0,2 Mn 0,2 O 2 Катодный материал : наноразмерная обработка поверхности первичных частиц.Nano Lett. 15 , 2111–2119 (2015). https://doi.org/10.1021/acs.nanolett.5b00045

    CAS
    Статья
    PubMed
    PubMed Central

    Google Scholar

  • 110.

    Xu, X., Huo, H., Jian, JY, et al .: Литий-ионные батареи: радиально ориентированные монокристаллические первичные нанолисты обеспечивают сверхвысокую скорость и циклические свойства LiNi 0,8 Co 0,1 Mn 0,1 O 2 Катодный материал для литий-ионных аккумуляторов.Adv. Energy Mater. 9 , 1970051 (2019). https://doi.org/10.1002/aenm.201970051

    Артикул

    Google Scholar

  • 111.

    Но, Х.Дж., Чен, З.Х., Юн, К.С. и др.: Катодный материал с наностержневой структурой: применение для современных высокоэнергетических и безопасных литиевых батарей. Chem. Матер. 25 , 2109–2115 (2013). https://doi.org/10.1021/cm4006772

    CAS
    Статья

    Google Scholar

  • 112.

    Лу Дж., Чен З.У., Пан Ф. и др.: Высокоэффективные анодные материалы для литий-ионных аккумуляторных батарей. Электрохим. Energ. Ред. 1 , 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

    CAS
    Статья

    Google Scholar

  • 113.

    Таками, Н., Хосина, К., Инагаки, Х .: Диффузия лития в Li 4/3 Ti 5/3 O 4 частиц во время введения и извлечения. J. Electrochem.Soc. 158 , A725 (2011). https://doi.org/10.1149/1.3574037

    CAS
    Статья

    Google Scholar

  • 114.

    Ву К., Янг Дж., Чжан Ю. и др .: Исследование Li 4 Ti 5 O 12 аккумуляторов, разработанных для гибридных электромобилей. J. Appl. Электрохим. 42 , 989–995 (2012). https://doi.org/10.1007/s10800-012-0442-0

    CAS
    Статья

    Google Scholar

  • 115.

    Li, P.H., Wang, W., Gong, S. и др .: Hydrogenated Na 2 Ti 3 O 7 , эпитаксиально выращенный на гибкой углеродной губке с примесью азота для калий-ионных аккумуляторов. ACS Appl. Матер. Интерфейсы. 10 , 37974–37980 (2018). https://doi.org/10.1021/acsami.8b11354

    CAS
    Статья
    PubMed

    Google Scholar

  • 116.

    Доу, Ф., Ши, Л.Й., Чен, Г.Р. и др .: Кремний / углеродные композитные анодные материалы для литий-ионных аккумуляторов.Электрохим. Energ. Ред. 2 , 149–198 (2019). https://doi.org/10.1007/s41918-018-00028-w

    CAS
    Статья

    Google Scholar

  • 117.

    Веттер, Дж., Новак, П., Вагнер, М.Р. и др .: Механизмы старения в литий-ионных батареях. J. Источники энергии 147 , 269–281 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.006

    CAS
    Статья

    Google Scholar

  • 118.

    Chen, Z.H., Qin, Y., Ren, Y., et al .: Многоуровневое исследование термической стабильности литированного графита. Energy Environ. Sci. 4 , 4023 (2011). https://doi.org/10.1039/c1ee01786a

    CAS
    Статья

    Google Scholar

  • 119.

    Барре А., Дегилхем Б., Гролло С. и др.: Обзор механизмов старения литий-ионных аккумуляторов и оценок для автомобильных приложений. J. Источники энергии 241 , 680–689 (2013).https://doi.org/10.1016/j.jpowsour.2013.05.040

    CAS
    Статья

    Google Scholar

  • 120.

    Xu, K .: Неводные жидкие электролиты для литиевых аккумуляторных батарей. Chem. Ред. 104 , 4303–4418 (2004). https://doi.org/10.1021/cr030203g

    CAS
    Статья
    PubMed

    Google Scholar

  • 121.

    Zhao, L.W., Watanabe, I., Doi, T., et al.: ТГ-МС анализ межфазной границы твердого электролита (SEI) на графитовом отрицательном электроде в литий-ионных батареях. J. Источники энергии 161 , 1275–1280 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.045

    CAS
    Статья

    Google Scholar

  • 122.

    Waldmann, T., Hogg, B.I., Wohlfahrt-Mehrens, M .: Li-покрытие как нежелательная побочная реакция в коммерческих литий-ионных элементах — обзор. J. Источники энергии 384 , 107–124 (2018).https://doi.org/10.1016/j.jpowsour.2018.02.063

    CAS
    Статья

    Google Scholar

  • 123.

    Ван, Q.S., Сан, Дж.Х., Яо, X.L. и др .: Температурное поведение литиированного графита с электролитом в литий-ионных батареях. J. Electrochem. Soc. 153 , A329 (2006). https://doi.org/10.1149/1.2139955

    CAS
    Статья

    Google Scholar

  • 124.

    Аурбах, Д., Забан, А., Эйн-Эли, Ю. и др .: Недавние исследования корреляции между химией поверхности, морфологией, трехмерными структурами и характеристиками интеркаляционных анодов Li и Li-C в нескольких важных электролитных системах. J. Power Sources 68 , 91–98 (1997). https://doi.org/10.1016/s0378-7753(97)02575-5

    CAS
    Статья

    Google Scholar

  • 125.

    Спотниц, Р., Франклин, Дж .: Злоупотребление мощными литий-ионными элементами.J. Источники энергии 113 , 81–100 (2003). https://doi.org/10.1016/s0378-7753(02)00488-3

    CAS
    Статья

    Google Scholar

  • 126.

    Юнг, Ю.С., Кавана, А.С., Райли, Л.А. и др.: Ультратонкое прямое атомное осаждение слоев на композитных электродах для высокопрочных и безопасных литий-ионных аккумуляторов. Adv. Матер. 22 , 2172–2176 (2010). https://doi.org/10.1002/adma.200

    1

    CAS
    Статья
    PubMed

    Google Scholar

  • 127.

    Chen, Z., Hsu, P.C., Lopez, J., et al .: Быстрые и обратимые термочувствительные полимерные коммутационные материалы для более безопасных батарей. Nat. Энергия 1 , 15009 (2016). https://doi.org/10.1038/nenergy.2015.9

    CAS
    Статья

    Google Scholar

  • 128.

    Чжан С.С .: Обзор электролитных добавок для литий-ионных аккумуляторов. J. Источники энергии 162 , 1379–1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074

    CAS
    Статья

    Google Scholar

  • 129.

    Чанг, Ю.С., Ю, С.Х., Ким, К.К .: Повышение температуры плавления полиэтилен-литий-ионного сепаратора аккумулятора за счет покрытия поверхности полимерами, имеющими высокую термостойкость. Ind. Eng. Chem. Res. 48 , 4346–4351 (2009). https://doi.org/10.1021/ie

    6z

    CAS
    Статья

    Google Scholar

  • 130.

    Орендорф, К.Дж .: Роль сепараторов в безопасности литий-ионных элементов. Электрохим. Soc. Интерфейс 21 , 61–65 (2012). https://doi.org/10.1149/2.f07122if

    CAS
    Статья

    Google Scholar

  • 131.

    Ван, К.С., Сан, Дж. Х .: Повышение безопасности литий-ионных батарей с помощью 4-изопропилфенилдифенилфосфата. Матер. Lett. 61 , 3338–3340 (2007). https://doi.org/10.1016/j.matlet.2006.11.060

    CAS
    Статья

    Google Scholar

  • 132.

    Ро, С.С., Сонг, К.В., Ким, К.К .: Влияние нерастворителя молекулярной структуры и его содержания на формирование макропористого полиарилатного слоя, нанесенного на полиэтиленовый сепаратор. Ind. Eng. Chem. Res. 50 , 12596–12605 (2011). https://doi.org/10.1021/ie201716m

    CAS
    Статья

    Google Scholar

  • 133.

    Hu, S.Y., Lin, S.D., Tu, Y.Y. и др .: Новые полипропиленовые сепараторы с покрытием из арамидного нановолокна для литий-ионных батарей.J. Mater. Chem. А 4 , 3513–3526 (2016). https://doi.org/10.1039/c5ta08694a

    CAS
    Статья

    Google Scholar

  • 134.

    Ли Б.П., Мессерсмит П.Б., Израэлачвили Дж. Н. и др.: Клеи и покрытия на основе мидий. Анну. Rev. Mater. Res. 41 , 99–132 (2011). https://doi.org/10.1146/annurev-matsci-062910-100429

    CAS
    Статья
    PubMed
    PubMed Central

    Google Scholar

  • 135.

    Уэйт, Дж. Х .: Сила мидий. Nat. Матер. 7 , 8–9 (2008). https://doi.org/10.1038/nmat2087

    CAS
    Статья
    PubMed

    Google Scholar

  • 136.

    Lv, X., Li, H., Zhang, Z.Q., et al .: УФ-прививка полиэтиленового сепаратора для литий-ионной батареи. Phys. Процедуры 25 , 227–232 (2012). https://doi.org/10.1016/j.phpro.2012.03.076

    CAS
    Статья

    Google Scholar

  • 137.

    Ямамото К., Танака Х., Сакагучи М. и др.: Четко определенный полиметилметакрилат, привитый к полиэтилену с помощью радикальной полимеризации с обратным переносом атома, инициированной пероксидами. Полимер 44 ​​, 7661–7669 (2003). https://doi.org/10.1016/j.polymer.2003.10.006

    CAS
    Статья

    Google Scholar

  • 138.

    Ко, Дж. М., Мин, Б. Г., Ким, Д. У. и др .: Литий-ионный аккумулятор тонкопленочного типа с использованием полиэтиленового сепаратора с привитым глицидилметакрилатом.Электрохим. Acta 50 , 367–370 (2004). https://doi.org/10.1016/j.electacta.2004.01.127

    CAS
    Статья

    Google Scholar

  • 139.

    Ли, Дж. Ю., Ли, Ю. М., Бхаттачарья, Б. и др.: Сепаратор, привитый силоксаном с помощью облучения электронным пучком для литиевых вторичных батарей. Электрохим. Acta 54 , 4312–4315 (2009). https://doi.org/10.1016/j.electacta.2009.02.088

    CAS
    Статья

    Google Scholar

  • 140.

    Zhu, X.M., Jiang, X.Y., Ai, X.P., et al .: TiO 2 Сепараторы из полиэтилена с привитой керамикой для повышения термостабильности и электрохимических характеристик литий-ионных аккумуляторов. J. Membr. Sci. 504 , 97–103 (2016). https://doi.org/10.1016/j.memsci.2015.12.059

    CAS
    Статья

    Google Scholar

  • 141.

    Xiang, Y.Y., Li, J.S., Lei, J.H., et al .: Усовершенствованные сепараторы для литий-ионных и литий-серных батарей: обзор последних достижений.Chemsuschem 9 , 3023–3039 (2016). https://doi.org/10.1002/cssc.201600943

    CAS
    Статья
    PubMed

    Google Scholar

  • 142.

    Ли, Й., Ли, Х., Ли, Т. и др .: Синергетическая термостабилизация полипропиленовых сепараторов с керамическим / сополиимидным покрытием для литий-ионных батарей. J. Источники энергии 294 , 537–544 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.106

    CAS
    Статья

    Google Scholar

  • 143.

    Wang, J., Hu, Z.Y., Yin, X.N., et al .: Керамическая композитная полипропиленовая разделительная пленка из глинозема / фенолфталеина, полиэфиркетона, полипропилена для литий-ионных аккумуляторных батарей. Электрохим. Acta 159 , 61–65 (2015). https://doi.org/10.1016/j.electacta.2015.01.208

    CAS
    Статья

    Google Scholar

  • 144.

    Чжу, X.M., Jiang, X.Y., Ai, X.P. и др.: Высокотермостабильный микропористый полиэтиленовый сепаратор с привитой керамикой для более безопасных литий-ионных батарей.ACS Appl. Матер. Интерфейсы. 7 , 24119–24126 (2015). https://doi.org/10.1021/acsami.5b07230

    CAS
    Статья
    PubMed

    Google Scholar

  • 145.

    Nho, Y.C., Sohn, J.Y., Shin, J., et al .: Получение нанокомпозита γ-Al 2 O 3 / полиэтиленовый сепаратор, сшитый облучением электронным пучком для литиевой вторичной батареи. Radiat. Phys. Chem. 132 , 65–70 (2017). https: // doi.org / 10.1016 / j.radphyschem.2016.12.002

    CAS
    Статья

    Google Scholar

  • 146.

    Чен, Х., Линь, Q., Сюй, Q., и др .: Активация плазмой и осаждение атомного слоя TiO 2 на полипропиленовых мембранах для улучшения характеристик литий-ионных батарей. J. Membr. Sci. 458 , 217–224 (2014). https://doi.org/10.1016/j.memsci.2014.02.004

    CAS
    Статья

    Google Scholar

  • 147.

    Пенг, К., Ван, Б., Ли, Ю.М. и др.: Осаждение TiO 2 частиц методом магнетронного распыления на полипропиленовых сепараторах для литий-ионных аккумуляторов. RSC Adv. 5 , 81468–81473 (2015). https://doi.org/10.1039/c5ra18171b

    CAS
    Статья

    Google Scholar

  • 148.

    Ши, К., Чжан, П., Хуанг, С.Х. и др .: Функциональный разделитель состоял из полиимидных нетканых материалов и слоя полиэтиленового покрытия для литий-ионных аккумуляторов.J. Источники энергии 298 , 158–165 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.008

    CAS
    Статья

    Google Scholar

  • 149.

    Wang, Z.H., Xiang, H.F., Wang, L.J., et al .: Неорганический композитный сепаратор на бумажной основе для литий-ионных батарей с высокой безопасностью. J. Membr. Sci. 553 , 10–16 (2018). https://doi.org/10.1016/j.memsci.2018.02.040

    CAS
    Статья

    Google Scholar

  • 150.

    Гонг В.З., Вей С.Ю., Руан С.Л. и др.: Коаксиальные волокнистые мембраны из ППЭСК / ПВДФ из электропряденого волокна со свойством теплового отключения, используемые для литий-ионных аккумуляторов. Матер. Lett. 244 , 126–129 (2019). https://doi.org/10.1016/j.matlet.2019.02.009

    CAS
    Статья

    Google Scholar

  • 151.

    Zhang, H., Zhang, Y., Xu, T.G., et al .: Сепаратор из поли (м-фениленизофталамида) для повышения термостойкости и удельной мощности литий-ионных аккумуляторов.J. Источники энергии 329 , 8–16 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.036

    CAS
    Статья

    Google Scholar

  • 152.

    Ли, Дж. Р., Вон, Дж. Х., Ким, Дж. Х. и др .: Самособирающиеся нанопористые частицы из поли (этилентерефталата) из нетканого композитного материала с высокой степенью безопасности, вызванные испарением. высокопроизводительные литий-ионные аккумуляторы. J. Источники энергии 216 , 42–47 (2012).https://doi.org/10.1016/j.jpowsour.2012.05.052

    CAS
    Статья

    Google Scholar

  • 153.

    Чжай, Ю.Ю., Ван, Н., Мао, X. и др .: Нановолоконные сепараторы из ПВдФ / ПММА / ПВдФ сэндвич-структуры с высокой механической прочностью и термической стабильностью для литий-ионных аккумуляторов. J. Mater. Chem. А 2 , 14511–14518 (2014). https://doi.org/10.1039/c4ta02151g

    CAS
    Статья

    Google Scholar

  • 154.

    Jeon, K.S., Nirmala, R., Navamathavan, R., et al .: Исследование эффективности Al 2 O 3 электроформованных нановолокон из метаарамида с капельным покрытием в качестве разделительной мембраны в литий-ионных вторичных батареях. Матер. Lett. 132 , 384–388 (2014). https://doi.org/10.1016/j.matlet.2014.06.117

    CAS
    Статья

    Google Scholar

  • 155.

    Lee, J., Lee, CL, Park, K., et al .: Синтез мата из полиимидного нановолокна с покрытием из Al 2 O 3 и его электрохимические характеристики в качестве сепаратора для иона лития. батареи.J. Источники энергии 248 , 1211–1217 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056

    CAS
    Статья

    Google Scholar

  • 156.

    Jiang, F.J., Yin, L., Yu, Q.C., и др .: Нановолоконная мембрана из бактериальной целлюлозы в качестве термостабильного сепаратора для литий-ионных батарей. J. Источники энергии 279 , 21–27 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.090

    CAS
    Статья

    Google Scholar

  • 157.

    Крол, Л.Ф., Беневенти, Д., Аллоин, Ф. и др .: Микрофибриллированная целлюлоза-SiO 2 композитные нанобумаги, полученные методом напыления. J. Mater. Sci. 50 , 4095–4103 (2015). https://doi.org/10.1007/s10853-015-8965-5

    CAS
    Статья

    Google Scholar

  • 158.

    Чун, С.Дж., Чой, Э.С., Ли, Э.Х. и др .: Экологически чистые разделительные мембраны из целлюлозного нановолокна из бумаги с настраиваемыми сетевыми нанопористыми каналами для литий-ионных батарейJ. Mater. Chem. 22 , 16618 (2012). https://doi.org/10.1039/c2jm32415f

    CAS
    Статья

    Google Scholar

  • 159.

    Сян, Х.Ф., Чен, Дж. Дж., Ли, З. и др .: Неорганическая мембрана в качестве разделителя для литий-ионной батареи. J. Источники энергии 196 , 8651–8655 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.055

    CAS
    Статья

    Google Scholar

  • 160.

    Chen, J.J., Wang, S.Q., Cai, D.D., и др .: Пористый SiO 2 в качестве сепаратора для улучшения электрохимических характеристик шпинели LiMn 2 O 4 катода. J. Membr. Sci. 449 , 169–175 (2014). https://doi.org/10.1016/j.memsci.2013.08.028

    CAS
    Статья

    Google Scholar

  • 161.

    Раджа М., Ангулакшми Н., Томас С. и др.: Тонкие, гибкие и термостойкие керамические мембраны в качестве разделителя для литий-ионных батарей.J. Membr. Sci. 471 , 103–109 (2014). https://doi.org/10.1016/j.memsci.2014.07.058

    CAS
    Статья

    Google Scholar

  • 162.

    Чжан, Ю.С., Ван, З.Х., Сян, Х.Ф. и др .: Тонкий неорганический композитный сепаратор для литий-ионных батарей. J. Membr. Sci. 509 , 19–26 (2016). https://doi.org/10.1016/j.memsci.2016.02.047

    CAS
    Статья

    Google Scholar

  • 163.

    He, M.N., Zhang, X.J., Jiang, K.Y., et al .: Чистый неорганический сепаратор для литий-ионных батарей. ACS Appl. Матер. Интерфейсы. 7 , 738–742 (2015). https://doi.org/10.1021/am507145h

    CAS
    Статья
    PubMed

    Google Scholar

  • 164.

    Шим, Э.Г., Нам, Т.Х., Ким, Дж. Г. и др .: Электрохимические характеристики литий-ионных батарей с трифенилфосфатом в качестве огнезащитной добавки. J. Источники энергии 172 , 919–924 (2007).https://doi.org/10.1016/j.jpowsour.2007.04.088

    CAS
    Статья

    Google Scholar

  • 165.

    Йим, Т., Парк, М.С., Ву, С.Г. и др .: Самозатухающие литий-ионные батареи на основе встроенных внутри микрокапсул пожаротушения с чувствительностью к температуре. Nano Lett. 15 , 5059–5067 (2015). https://doi.org/10.1021/acs.nanolett.5b01167

    CAS
    Статья
    PubMed

    Google Scholar

  • 166.

    Лю, К., Лю, В., Цю, Ю.К., и др.: Сепаратор из микроволокна с электропрядением «ядро-оболочка» с термостойкими огнестойкими свойствами для литий-ионных аккумуляторов. Sci. Adv. 3 , e1601978 (2017). https://doi.org/10.1126/sciadv.1601978

    CAS
    Статья
    PubMed
    PubMed Central

    Google Scholar

  • 167.

    Чжан, Х.Ю., Цао, Ю.Л., Ян, Х.Х. и др.: Простое приготовление и электрохимическая характеристика модифицированного поли (4-метокситрифениламином) сепаратора в качестве самоактивирующегося переключателя потенциала для литий-ионных батарей.Электрохим. Acta 108 , 191–195 (2013). https://doi.org/10.1016/j.electacta.2013.06.116

    CAS
    Статья

    Google Scholar

  • 168.

    Ким С.Ю., Хонг Дж., Палмор Г.Т.Р .: целлюлоза, декорированная полипирролом, для аккумулирования энергии. Synth. Встретились. 162 , 1478–1481 (2012). https://doi.org/10.1016/j.synthmet.2012.06.003

    CAS
    Статья

    Google Scholar

  • 169.

    Li, S.L., Xia, L., Zhang, H.Y., и др .: Сепаратор, модифицированный поли (3-децилтиофен), с самодействующим механизмом защиты от перезарядки для литий-ионных аккумуляторов на основе LiFePO 4 . J. Источники энергии 196 , 7021–7024 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.111

    CAS
    Статья

    Google Scholar

  • 170.

    Зив Б., Леви Н., Боргель В. и др.: Связывание марганца и увеличение срока службы литий-ионных аккумуляторов полимерными 18-краун-6 эфирами.J. Electrochem. Soc. 161 , A1213 – A1217 (2014). https://doi.org/10.1149/2.00

    jes

    CAS
    Статья

    Google Scholar

  • 171.

    Banerjee, A., Ziv, B., Shilina, Y., et al .: Многофункциональный сепаратор для улавливания ионов марганца и удаления фтористоводородной кислоты для литий-ионных батарей на основе дилития из поли (этилен-альтернат-малеиновая кислота) соль. Adv. Energy Mater. 7 , 1601556 (2017). https://doi.org/10.1002 / aenm.201601556

    CAS
    Статья

    Google Scholar

  • 172.

    Li, Z.C., Pauric, A.D., Goward, G.R., et al .: Связывание марганца и улучшенное высокотемпературное циклирование литий-ионных аккумуляторов полимерным аза-15-краун-5. J. Источники энергии 272 , 1134–1141 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.073

    CAS
    Статья

    Google Scholar

  • 173.

    Банерджи, А., Зив, Б., Луски, С. и др .: Повышение срока службы литий-ионных аккумуляторов с помощью материалов, улавливающих ионы марганца с азотной функциональностью. J. Источники энергии 341 , 457–465 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.036

    CAS
    Статья

    Google Scholar

  • 174.

    Ниши Ю. Литий-ионные аккумуляторные батареи; последние 10 лет и будущее. J. Источники энергии 100 , 101–106 (2001).https://doi.org/10.1016/s0378-7753(01)00887-4

    CAS
    Статья

    Google Scholar

  • 175.

    Калхофф, Дж., Эшету, Г.Г., Брессер, Д. и др.: Более безопасные электролиты для литий-ионных батарей: современное состояние и перспективы. Chemsuschem 8 , 2154–2175 (2015). https://doi.org/10.1002/cssc.201500284

    CAS
    Статья
    PubMed

    Google Scholar

  • 176.

    Сюй, К .: Электролиты и межфазные границы в литий-ионных батареях и других устройствах. Chem. Ред. 114 , 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    CAS
    Статья
    PubMed

    Google Scholar

  • 177.

    Цзян, Дж. У., Дан, Дж. Р.: Влияние растворителей и солей на термическую стабильность LiC6. Электрохим. Acta 49 , 4599–4604 (2004). https://doi.org/10.1016/j.electacta.2004.05.014

    CAS
    Статья

    Google Scholar

  • 178.

    Haregewoin, A.M., Wotango, A.S., Hwang, B.J .: Электролитные добавки для электродов литий-ионных аккумуляторов: прогресс и перспективы. Energy Environ. Sci. 9 , 1955–1988 (2016). https://doi.org/10.1039/c6ee00123h

    CAS
    Статья

    Google Scholar

  • 179.

    Moumouzias, G., Ritzoulis, G., Siapkas, D., et al .: Сравнительное исследование LiBF 4 , LiAsF6, LiPF6 и LiClO 4 в качестве электролитов в пропиленкарбонат-диэтилкарбонате Растворы для Li / LiMn 2 O 4 ячеек.J. Источники энергии 122 , 57–66 (2003). https://doi.org/10.1016/S0378-7753(03)00348-3

    CAS
    Статья

    Google Scholar

  • 180.

    Ferrari, S., Quartarone, E., Mustarelli, P., et al .: Бинарная ионно-жидкая система, состоящая из N-метоксиэтил-N-метилпирролидиния бис (трифторметансульфонил) -имида и бис (трифторметансульфонил) лития. ) имид: новый перспективный электролит для литиевых батарей. J. Источники энергии 194 , 45–50 (2009).https://doi.org/10.1016/j.jpowsour.2008.12.013

    CAS
    Статья

    Google Scholar

  • 181.

    Хан, Х.Б., Чжоу, С.С., Чжан, Д.Дж., и др .: Бис (фторсульфонил) имид лития (LiFSI) как проводящая соль для неводных жидких электролитов для литий-ионных аккумуляторов: физико-химические и электрохимические свойства. J. Источники энергии 196 , 3623–3632 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.040

    CAS
    Статья

    Google Scholar

  • 182.

    Zuo, X.X., Fan, C.J., Liu, J.S., et al .: Тетрафторборат лития в качестве добавки к электролиту для улучшения характеристик высокого напряжения литий-ионной батареи. J. Electrochem. Soc. 160 , A1199 – A1204 (2013). https://doi.org/10.1149/2.066308jes

    CAS
    Статья

    Google Scholar

  • 183.

    Ларуш-Асраф, Л., Битон, М., Теллер, Х. и др.: Об электрохимическом и термическом поведении растворов бис (оксалат) бората лития (LiBOB).J. Источники энергии 174 , 400–407 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.171

    CAS
    Статья

    Google Scholar

  • 184.

    Ву, Ф., Чжу, Q.Z., Чен, Р.Дж. и др .: Ионные жидкие электролиты с защитным дифтор (оксалат) боратом лития для высоковольтных литий-ионных батарей. Nano Energy 13 , 546–553 (2015). https://doi.org/10.1016/j.nanoen.2015.03.042

    CAS
    Статья

    Google Scholar

  • 185.

    Окуока С.И., Огасавара Ю., Суга Ю. и др.: Новая герметичная литий-пероксидная батарея с совместно легированным катодом Li 2 O в сверхконцентрированном литий-бис (фторсульфонил) амидном электролите. Sci. Отчет 4 , 5684 (2015). https://doi.org/10.1038/srep05684

    CAS
    Статья

    Google Scholar

  • 186.

    Ван, К.С., Пинг, П., Чжао, X.J. и др .: Температурный разгон вызвал пожар и взрыв литий-ионной батареи.J. Источники энергии 208 , 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038

    CAS
    Статья

    Google Scholar

  • 187.

    Макнейл Д.Д., Дан Дж.Р .: Реакция заряженных катодов с неводными растворителями и электролитами: I. Li 0,5 CoO 2 . J. Electrochem. Soc. 148 , A1205 (2001). https://doi.org/10.1149/1.1407245

    CAS
    Статья

    Google Scholar

  • 188.

    Шлоуп, С.Е., Керр, Дж. Б., Киношита, К.: Роль реакционной способности электролита литий-ионного аккумулятора в снижении производительности и саморазрядке. J. Источники энергии 119 (120/121), 330–337 (2003). https://doi.org/10.1016/s0378-7753(03)00149-6

    Артикул

    Google Scholar

  • 189.

    Кавамура, Т., Кимура, А., Эгашира, М., и др .: Термическая стабильность алкилкарбонатных электролитов со смешанными растворителями для литий-ионных элементов. J. Источники энергии 104 , 260–264 (2002).https://doi.org/10.1016/S0378-7753(01)00960-0

    CAS
    Статья

    Google Scholar

  • 190.

    Слоуп С.Е., Пью Дж.К., Ван С. и др.: Химическая реакционная способность PF 5 и LiPF 6 в растворах этиленкарбоната / диметилкарбоната. Электрохим. Solid-State Lett. 4 , А42 (2001). https://doi.org/10.1149/1.1353158

    CAS
    Статья

    Google Scholar

  • 191.

    Шмидт М., Хейдер У., Кюнер А. и др.: Фторалкилфосфаты лития: новый класс проводящих солей для электролитов для высокоэнергетических литий-ионных батарей. J. Power Sources 97 (98), 557–560 (2001). https://doi.org/10.1016/s0378-7753(01)00640-1

    Артикул

    Google Scholar

  • 192.

    Гнанарадж, Дж. С., Зиниград, Э., Асраф, Л. и др .: Об использовании LiPF 3 (CF 2 CF 3 ) 3 (LiFAP) растворов для Литий-ионные аккумуляторы.электрохимические и термические исследования. Электрохим. Commun. 5 , 946–951 (2003). https://doi.org/10.1016/j.elecom.2003.08.020

    CAS
    Статья

    Google Scholar

  • 193.

    Сюй М.К., Сяо А., Ли, В.С. и др.: Исследование тетрафтороксалатофосфата лития в качестве электролита литий-ионной батареи. Электрохим. Solid-State Lett. 12 , А155 (2009 г.). https://doi.org/10.1149/1.3134462

    CAS
    Статья

    Google Scholar

  • 194.

    Qin, Y., Chen, Z.H., Liu, J., et al .: Тетрафтороксалатофосфат лития в качестве добавки к электролиту для литий-ионных элементов. Электрохим. Solid-State Lett. 13 , А11 (2010). https://doi.org/10.1149/1.3261738

    CAS
    Статья

    Google Scholar

  • 195.

    Хуанг, Дж.Й., Лю, X.J., Кан, X.L. и др .: Исследование γ-бутиролактона для электролитов на основе LiBOB. J. Источники энергии 189 , 458–461 (2009). https: // doi.org / 10.1016 / j.jpowsour.2008.12.088

    CAS
    Статья

    Google Scholar

  • 196.

    Сюй, М.К., Чжоу, Л., Хао, Л.С. и др .: Исследование и применение дифтор (оксалат) бората лития (LiDFOB) в качестве добавки для улучшения термической стабильности электролита для литий-ионных аккумуляторов. . J. Источники энергии 196 , 6794–6801 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.050

    CAS
    Статья

    Google Scholar

  • 197.

    Younesi, R., Veith, G.M., Johansson, P., и др .: Литиевые соли для современных литиевых батарей: Li-Metal, Li-O 2 и Li-S. Energy Environ. Sci. 8 , 1905–1922 (2015). https://doi.org/10.1039/c5ee01215e

    CAS
    Статья

    Google Scholar

  • 198.

    Ян, Л., Чжан, Х.Дж., Дрисколл, П.Ф. и др.: Литиевые соли на основе малонатобората с шестью кольцами в качестве электролитов для литий-ионных батарей. ECS, Лас-Вегас, Невада (2011).https://doi.org/10.1149/1.3589921

    Книга

    Google Scholar

  • 199.

    Макмиллан, Р., Слегр, Х., Шу, З.Х. и др .: Фторэтиленкарбонатный электролит и его использование в литий-ионных батареях с графитовыми анодами. J. Power Sources 81 (82), 20–26 (1999). https://doi.org/10.1016/s0378-7753(98)00201-8

    Артикул

    Google Scholar

  • 200.

    Корепп, К., Kern, W., Lanzer, E.A. и др.: 4-бромбензилизоцианат по сравнению с бензилизоцианатом: новые пленкообразующие добавки к электролиту и добавки для защиты от перезаряда для литий-ионных аккумуляторов. J. Источники энергии 174 , 637–642 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.142

    CAS
    Статья

    Google Scholar

  • 201.

    Li, Z.D., Zhang, Y.C., Xiang, H.F., et al .: Триметилфосфит в качестве добавки к электролиту для высоковольтных литий-ионных батарей с использованием катода из слоистого оксида с высоким содержанием лития.J. Источники энергии 240 , 471–475 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.038

    CAS
    Статья

    Google Scholar

  • 202.

    Чандрасекаран, Р., Кох, М., Ожава, Ю. и др.: Исследования электрохимических ячеек на фторированном природном графите в пропиленкарбонатном электролите с добавкой дифторметилацетата (MFA) для низкотемпературных литиевых батарей. J. Chem. Sci. 121 , 339–346 (2009).https://doi.org/10.1007/s12039-009-0039-2

    CAS
    Статья

    Google Scholar

  • 203.

    Xia, L., Xia, Y.G., Wang, C.S. и др .: 5 электролитов класса V на основе фторированных растворителей для литий-ионных аккумуляторов с отличной циклируемостью. ХимЭлектроХим 2 , 1707–1712 (2015). https://doi.org/10.1002/celc.201500286

    CAS
    Статья

    Google Scholar

  • 204.

    Ли, Ю.М., Нам, К.М., Хван, Э.Х. и др.: Межфазное происхождение улучшения характеристик и затухания для 4,6 В LiNi 0,5 Co 0,2 Mn 0,3 O 2 батарейных катодов. J. Phys. Chem. С 118 , 10631–10639 (2014). https://doi.org/10.1021/jp501670g

    CAS
    Статья

    Google Scholar

  • 205.

    Xiang, H.F., Xu, H.Y., Wang, Z.Z. и др .: Диметилметилфосфонат (DMMP) как эффективная огнезащитная добавка для электролитов литий-ионных аккумуляторов.J. Источники энергии 173 , 562–564 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.001

    CAS
    Статья

    Google Scholar

  • 206.

    Левчик С.В., Вейль Э.Д .: Обзор последних достижений в области антипиренов на основе фосфора. J. Fire Sci. 24 , 345–364 (2006). https://doi.org/10.1177/0734

    6068426

    CAS
    Статья

    Google Scholar

  • 207.

    Ту, W.Q., Ся, П., Чжэн, X.W., и др .: Понимание взаимодействия между слоистым оксидом, богатым литием, и электролитом, содержащим добавки. J. Источники энергии 341 , 348–356 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.012

    CAS
    Статья

    Google Scholar

  • 208.

    Nam, TH, Shim, EG, Kim, JG и др .: Дифенилоктилфосфат и трис (2,2,2-трифторэтил) фосфит в качестве огнезащитных добавок для электролитов литий-ионных элементов при повышенной температуре. .J. Источники энергии 180 , 561–567 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.061

    CAS
    Статья

    Google Scholar

  • 209.

    Ван, X.M., Ясукава, Э., Касуя, С .: Негорючие триметилфосфатные электролиты для литий-ионных батарей, содержащие растворитель: I. Основные свойства. J. Electrochem. Soc. 148 , A1058 (2001). https://doi.org/10.1149/1.1397773

    CAS
    Статья

    Google Scholar

  • 210.

    Сюй К., Дин М.С., Чжан С.С. и др.: Попытка составить негорючие электролиты на основе ионов лития с алкилфосфатами и фосфазенами. J. Electrochem. Soc. 149 , A622 (2002). https://doi.org/10.1149/1.1467946

    CAS
    Статья

    Google Scholar

  • 211.

    Юн, У.С., Хаас, О., Мухаммад, С. и др.: Мягкое XAS-исследование на месте слоистого катодного материала на основе никеля при повышенных температурах: новый подход к изучению термической стабильности.Sci. Отчет 4 , 6827 (2015). https://doi.org/10.1038/srep06827

    CAS
    Статья

    Google Scholar

  • 212.

    Лю, Дж. У., Сонг, X., Чжоу, Л. и др .: Фторированное производное фосфазена — многообещающая добавка к электролиту для высоковольтных литий-ионных батарей: от электрохимических характеристик до механизма коррозии. Nano Energy 46 , 404–414 (2018). https://doi.org/10.1016/j.nanoen.2018.02.029

    CAS
    Статья

    Google Scholar

  • 213.

    Ихара М., Ханг Б.Т., Сато К. и др.: Свойства углеродных анодов и термическая стабильность в электролите LiPF 6 / метилдифторацетат. J. Electrochem. Soc. 150 , А1476 (2003). https://doi.org/10.1149/1.1614269

    CAS
    Статья

    Google Scholar

  • 214.

    Ли, Х.Х., Ван, Й.Й., Ван, К.С. и др .: Функция виниленкарбоната в качестве тепловой добавки к электролиту в литиевых батареях.J. Appl. Электрохим. 35 , 615–623 (2005). https://doi.org/10.1007/s10800-005-2700-x

    CAS
    Статья

    Google Scholar

  • 215.

    Ота, Х., Саката, Ю., Иноуэ, А. и др .: Анализ слоев SEI, полученных из виниленкарбоната, на графитовом аноде. J. Electrochem. Soc. 151 , A1659 (2004). https://doi.org/10.1149/1.1785795

    CAS
    Статья

    Google Scholar

  • 216.

    Воллмер, Дж. М., Кертисс, Л. А., Виссерс, Д. Р. и др .: Механизмы восстановления этилена, пропилена и винилэтиленкарбонатов. J. Electrochem. Soc. 151 , A178 (2004). https://doi.org/10.1149/1.1633765

    CAS
    Статья

    Google Scholar

  • 217.

    Чен, З.Х., Цинь, Ю., Амин, К.: Редокс-шаттлы для более безопасных литий-ионных батарей. Электрохим. Acta 54 , 5605–5613 (2009). https://doi.org/10.1016/j.electacta.2009.05.017

    CAS
    Статья

    Google Scholar

  • 218.

    Сяо, Л.Ф., Ай, X.P., Цао, Ю.Л. и др .: Электрохимическое поведение бифенила как полимеризуемой добавки для защиты от перезарядки литий-ионных аккумуляторов. Электрохим. Acta 49 , 4189–4196 (2004). https://doi.org/10.1016/j.electacta.2004.04.013

    CAS
    Статья

    Google Scholar

  • 219.

    Элиа, Г.А., Улисси, У., Чон, С. и др.: Исключительная долговечность литий-ионных батарей с использованием электролитов на основе ионной жидкости. Energy Environ. Sci. 9 , 3210–3220 (2016). https://doi.org/10.1039/c6ee01295g

    CAS
    Статья

    Google Scholar

  • 220.

    Бхатт, А.И., Бест, А.С., Хуанг, Дж. Х. и др .: Применение бис (фторсульфонил) имида N-пропил-N-метилпирролидиния RTIL, содержащего бис (фторсульфонил) имид лития, в ионной жидкости на основе литиевых батарей.J. Electrochem. Soc. 157 , А66 (2010). https://doi.org/10.1149/1.3257978

    CAS
    Статья

    Google Scholar

  • 221.

    Мун, Дж., Йим, Т., Юнг, С., и др .: Возможность использования ионного жидкого растворителя на основе пирролидиния для неграфитовых углеродных электродов. Электрохим. Commun. 13 , 1256–1259 (2011). https://doi.org/10.1016/j.elecom.2011.08.030

    CAS
    Статья

    Google Scholar

  • 222.

    Lewandowski, A., widerska-Mocek, A .: Ионные жидкости как электролиты для литий-ионных аккумуляторов: обзор электрохимических исследований. J. Источники энергии 194 , 601–609 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.089

    CAS
    Статья

    Google Scholar

  • 223.

    Ферникола А., Кроче Ф., Скросати Б. и др.: LiTFSI-BEPyTFSI как улучшенный ионно-жидкий электролит для литиевых аккумуляторных батарей. J. Источники энергии 174 , 342–348 (2007).https://doi.org/10.1016/j.jpowsour.2007.09.013

    CAS
    Статья

    Google Scholar

  • 224.

    Патри, Г., Романьи, А., Мартине, С., и др .: Моделирование затрат на литий-ионные аккумуляторные элементы для автомобильных приложений. Energy Sci. Англ. 3 , 71–82 (2015). https://doi.org/10.1002/ese3.47

    Артикул

    Google Scholar

  • 225.

    Блидберг, А., Густафссон, Т., Tengstedt, C., et al .: Мониторинг распределения фаз Li x FeSO 4 F (x = 1, 0,5, 0) в оперативном режиме для определения однородности реакции в пористых электродах батареи. Chem. Матер. 29 , 7159–7169 (2017). https://doi.org/10.1021/acs.chemmater.7b01019

    CAS
    Статья

    Google Scholar

  • 226.

    Харрис, С.Дж., Тиммонс, А., Бейкер, Д.Р. и др .: Прямые измерения переноса лития в отрицательных электродах литий-ионной батареи на месте.Chem. Phys. Lett. 485 , 265–274 (2010). https://doi.org/10.1016/j.cplett.2009.12.033

    CAS
    Статья

    Google Scholar

  • 227.

    Сандер, Дж. С., Эрб, Р. М., Ли, Л. и др .: Электроды аккумуляторных батарей с высокими рабочими характеристиками с помощью магнитного шаблона. Nat. Энергия 1 , 16099 (2016). https://doi.org/10.1038/nenergy.2016.99

    CAS
    Статья

    Google Scholar

  • 228.

    Эбнер М., Чанг Д. В., Гарсия Р. Э. и др.: Электроды: анизотропия извилистости в электродах литий-ионных аккумуляторов. Adv. Energy Mater. 4 , 1301278 (2014). https://doi.org/10.1002/aenm.201470024

    Артикул

    Google Scholar

  • 229.

    Чен, С.Дж., Чжан, Ю., Ли, Ю.Дж. и др .: Высокопроводящие, легкие углеродные каркасы с низкой извилистостью в качестве сверхтолстых трехмерных токоприемников. Adv. Energy Mater. 7 , 1700595 (2017).https://doi.org/10.1002/aenm.201700595

    CAS
    Статья

    Google Scholar

  • 230.

    Вилке, С., Швейцер, Б., Хатиб, С. и др .: Предотвращение распространения теплового разгона в литий-ионных аккумуляторных батареях с использованием композитного материала с фазовым переходом: экспериментальное исследование. J. Источники энергии 340 , 51–59 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.018

    CAS
    Статья

    Google Scholar

  • 231.

    Финеган, Д.П., Шил, М., Робинсон, Дж. Б. и др.: Высокоскоростная томография литий-ионных аккумуляторов во время теплового разгона. Nat. Commun. 6 , 6924 (2015). https://doi.org/10.1038/ncomms7924

    CAS
    Статья
    PubMed
    PubMed Central

    Google Scholar

  • 232.

    Чжун, Х., Конг, К., Чжан, Х. и др .: Безопасный композитный катод с положительным температурным коэффициентом для литий-ионной батареи. J. Источники энергии 216 , 273–280 (2012).https://doi.org/10.1016/j.jpowsour.2012.05.015

    CAS
    Статья

    Google Scholar

  • 233.

    Feng, X.M., Ai, X.P., Yang, H.X .: Электрод с положительным температурным коэффициентом и механизмом отключения по температуре для использования в литиевых аккумуляторных батареях. Электрохим. Commun. 6 , 1021–1024 (2004). https://doi.org/10.1016/j.elecom.2004.07.021

    CAS
    Статья

    Google Scholar

  • 234.

    Zhang, H.Y., Pang, J., Ai, X.P., et al .: Электроды с положительным температурным коэффициентом на основе поли (3-бутилтиофена) для более безопасных литий-ионных батарей. Электрохим. Acta 187 , 173–178 (2016). https://doi.org/10.1016/j.electacta.2015.11.036

    CAS
    Статья

    Google Scholar

  • 235.

    Янг, Х., Леоу, W.R., Чен, X.D .: Термочувствительные полимеры для повышения безопасности электрохимических накопителей. Adv. Матер. 30 , 1704347 (2018). https://doi.org/10.1002/adma.201704347

    CAS
    Статья

    Google Scholar

  • 236.

    Кисе, М., Йошиока, С., Хамано, К. и др .: Разработка нового безопасного электрода для литиевой аккумуляторной батареи. J. Источники энергии 146 , 775–778 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.158

    CAS
    Статья

    Google Scholar

  • 237.

    Кисе, М., Йошиока, С., Хамано, К., и др .: Поведение импеданса при переменном токе и устойчивость литий-ионных аккумуляторов к перезаряду с использованием катодов с положительным температурным коэффициентом. J. Electrochem. Soc. 153 , A1004 (2006). https://doi.org/10.1149/1.2189262

    CAS
    Статья

    Google Scholar

  • 238.

    Abada, S., Marlair, G., Lecocq, A., et al .: Моделирование литий-ионных батарей, ориентированное на безопасность: обзор.J. Источники энергии 306 , 178–192 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.100

    CAS
    Статья

    Google Scholar

  • 239.

    Xia, L., Li, S.L., Ai, X.P. и др .: Термочувствительные катодные материалы для более безопасных литий-ионных батарей. Energy Environ. Sci. 4 , 2845 (2011). https://doi.org/10.1039/c0ee00590h

    CAS
    Статья

    Google Scholar

  • 240.

    Май Л.К., Ян М.Ю., Чжао Ю.Л .: Отслеживание разряда батарей в реальном времени. Природа 546 , 469–470 (2017). https://doi.org/10.1038/546469a

    CAS
    Статья
    PubMed

    Google Scholar

  • 241.

    Mutyala, M.S.K., Zhao, J.Z., Li, J.Y., et al .: Измерение температуры в литий-ионной батарее на месте с помощью переносных гибких тонкопленочных термопар. J. Источники энергии 260 , 43–49 (2014). https: // doi.org / 10.1016 / j.jpowsour.2014.03.004

    CAS
    Статья

    Google Scholar

  • 242.

    Форгез, К., Винь До, Д., Фридрих, Г. и др.: Тепловое моделирование цилиндрической литий-ионной батареи LiFePO 4 / графит. J. Источники энергии 195 , 2961–2968 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.105

    CAS
    Статья

    Google Scholar

  • 243.

    Zhu, J.G., Sun, Z.C., Wei, X.Z., и др .: Оценка внутренней температуры батареи для LiFePO 4 батареи на основе сдвига фазы импеданса в рабочих условиях. Энергии 10 , 60 (2017). https://doi.org/10.3390/en10010060

    Артикул

    Google Scholar

  • 244.

    Ли, С.Ю., Чуанг, С.М., Ли, С.Дж. и др.: Гибкий микродатчик для мониторинга температуры и напряжения плоских элементов на месте. Sens. Actuat.Физ. 232 , 214–222 (2015). https://doi.org/10.1016/j.sna.2015.06.004

    CAS
    Статья

    Google Scholar

  • 245.

    Ли С.Ю., Ли С.Дж., Хунг Ю.М. и др.: Встроенный микросенсор для микроскопического мониторинга в реальном времени локальной температуры, напряжения и тока внутри литий-ионной батареи. Sens. Actuat. Физ. 253 , 59–68 (2017). https://doi.org/10.1016/j.sna.2016.10.011

    CAS
    Статья

    Google Scholar

  • 246.

    Ghannoum, A., Nieva, P., Yu, A.P., et al .: Разработка встроенных волоконно-оптических датчиков затухающих волн для оптических характеристик графитовых анодов в литий-ионных батареях. ACS Appl. Матер. Интерфейсы. 9 , 41284–41290 (2017). https://doi.org/10.1021/acsami.7b13464

    CAS
    Статья
    PubMed

    Google Scholar

  • 247.

    Насименто, М., Феррейра, М.С., Пинто, Дж. Л .: Тепловой мониторинг литиевых батарей в реальном времени с помощью волоконных датчиков и термопар: сравнительное исследование.Измерение 111 , 260–263 (2017). https://doi.org/10.1016/j.measurement.2017.07.049

    Артикул

    Google Scholar

  • 248.

    Nascimento, M., Novais, S., Ding, M.S., и др .: Внутренняя деформация и температурная дискриминация с оптоволоконными гибридными датчиками в литий-ионных батареях. J. Источники энергии 410 (411), 1–9 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.096

    CAS
    Статья

    Google Scholar

  • 249.

    Зоммер, Л.В., Кизель, П., Гангули, А. и др.: Быстрые и медленные процессы диффузии ионов в литиево-ионных ячейках во время цикла, наблюдаемые с помощью оптоволоконных датчиков деформации. J. Источники энергии 296 , 46–52 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.025

    CAS
    Статья

    Google Scholar

  • 250.

    Новаис, С., Насименто, М., Гранде, Л. и др.: Контроль внутренней и внешней температуры литий-ионной батареи с помощью датчиков с оптоволоконной решеткой Брэгга.Датчики 16 , 1394 (2016). https://doi.org/10.3390/s160

    CAS
    Статья

    Google Scholar

  • 251.

    Суреш П., Шукла А.К., Муничандрайя Н .: Исследования температурной зависимости переменного тока. импеданс литий-ионных элементов. J. Appl. Электрохим. 32 , 267–273 (2002)

    CAS
    Статья

    Google Scholar

  • 252.

    Чжу, Дж. Г., Сунь, З.C., Wei, X.Z. и др.: Новый метод онлайн-оценки внутренней температуры литий-ионной батареи, основанный на измерении спектроскопии электрохимического импеданса. J. Источники энергии 274 , 990–1004 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.182

    CAS
    Статья

    Google Scholar

  • 253.

    Сринивасан, Р., Демирев, П.А., Кархафф, Б.Г .: Быстрый мониторинг фазовых сдвигов импеданса в литий-ионных батареях для предотвращения опасностей.J. Источники энергии 405 , 30–36 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.014

    CAS
    Статья

    Google Scholar

  • 254.

    Ву, М.С., Чанг, П.К.Дж., Лин, Дж. К.: Электрохимические исследования передовых литий-ионных аккумуляторов с помощью трехэлектродных измерений. J. Electrochem. Soc. 152 , А47 (2005). https://doi.org/10.1149/1.1825385

    CAS
    Статья

    Google Scholar

  • 255.

    Сринивасан, Р., Кархафф, Б.Г., Батлер, М.Х., и др .: Мгновенное измерение внутренней температуры в литий-ионных перезаряжаемых элементах. Электрохим. Acta 56 , 6198–6204 (2011). https://doi.org/10.1016/j.electacta.2011.03.136

    CAS
    Статья

    Google Scholar

  • 256.

    An, S.J., Li, J.L., Daniel, C., et al .: Разработка и демонстрация трехэлектродных карманных элементов для литий-ионных батарей. J. Electrochem.Soc. 164 , A1755 – A1764 (2017). https://doi.org/10.1149/2.0031709jes

    CAS
    Статья

    Google Scholar

  • 257.

    Янг, X.G., Ге, С.Х., Лю, Т. и др.: Анализ сигнала плато напряжения для обнаружения и количественной оценки литиевого покрытия в литий-ионных элементах. J. Источники энергии 395 , 251–261 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.073

    CAS
    Статья

    Google Scholar

  • 258.

    Янсен, А.Н., Дис, Д.У., Абрахам, Д.П. и др.: Низкотемпературное исследование литий-ионных элементов с использованием электрода сравнения Li y S n . J. Источники энергии 174 , 373–379 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.235

    CAS
    Статья

    Google Scholar

  • 259.

    Ла Мантиа, Ф., Уэсселс, К.Д., Дешазер, Х.Д. и др .: Надежные электроды сравнения для литий-ионных батарей. Электрохим.Commun. 31 , 141–144 (2013). https://doi.org/10.1016/j.elecom.2013.03.015

    CAS
    Статья

    Google Scholar

  • 260.

    Лю, Q.Q., Ду, С.Ю., Шен, Б. и др .: Понимание нежелательных проблем с литиевым покрытием анода в литий-ионных батареях. RSC Adv. 6 , 88683–88700 (2016). https://doi.org/10.1039/c6ra19482f

    CAS
    Статья

    Google Scholar

  • 261.

    Ву, Х., Чжуо, Д., Конг, Д.С. и др.: Повышение безопасности аккумуляторной батареи за счет раннего обнаружения внутреннего короткого замыкания с помощью бифункционального разделителя. Nat. Commun. 5 , 5193 (2014). https://doi.org/10.1038/ncomms6193

    CAS
    Статья
    PubMed

    Google Scholar

  • 262.

    Бернс, Дж. К., Стивенс, Д. А., Дан, Дж. Р.: обнаружение литиевого покрытия на месте с использованием высокоточной кулонометрии. J. Electrochem. Soc. 162 , A959 – A964 (2015).https://doi.org/10.1149/2.0621506jes

    CAS
    Статья

    Google Scholar

  • 263.

    Bitzer, B., Gruhle, A .: Новый метод обнаружения литиевого покрытия путем измерения толщины элемента. J. Источники энергии 262 , 297–302 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.142

    CAS
    Статья

    Google Scholar

  • 264.

    Ригер, Б., Шустер, С.Ф., Эрхард С.В. и др.: Многонаправленное лазерное сканирование как инновационный метод обнаружения локального повреждения ячеек во время быстрой зарядки литий-ионных ячеек. J. Хранение энергии 8 , 1–5 (2016). https://doi.org/10.1016/j.est.2016.09.002

    Артикул

    Google Scholar

  • 265.

    Гримсманн, Ф., Герберт, Т., Браухле, Ф. и др .: Определение максимальных зарядных токов литий-ионных элементов для малых зарядов. J. Источники энергии 365 , 12–16 (2017).https://doi.org/10.1016/j.jpowsour.2017.08.044

    CAS
    Статья

    Google Scholar

  • 266.

    Ульманн, К., Иллиг, Дж., Эндер, М. и др .: Обнаружение металлического лития на графите в экспериментальных ячейках. J. Источники энергии 279 , 428–438 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.046

    CAS
    Статья

    Google Scholar

  • 267.

    Смарт, М.С., Ратнакумар, Б.В .: Влияние состава электролита на литиевое покрытие в литий-ионных элементах. J. Electrochem. Soc. 158 , А379 (2011). https://doi.org/10.1149/1.3544439

    CAS
    Статья

    Google Scholar

  • 268.

    Петцл М., Данцер М.А.: неразрушающее обнаружение, определение характеристик и количественная оценка литиевого покрытия в коммерческих литий-ионных батареях. J. Источники энергии 254 , 80–87 (2014).https://doi.org/10.1016/j.jpowsour.2013.12.060

    CAS
    Статья

    Google Scholar

  • 269.

    фон Людерс, К., Зинт, В., Эрхард, С.В., и др .: Литиевое покрытие в литий-ионных батареях исследовано с помощью релаксации напряжения и дифракции нейтронов на месте. J. Источники энергии 342 , 17–23 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.032

    CAS
    Статья

    Google Scholar

  • 270.

    Шиндлер, С., Бауэр, М., Петцл, М. и др.: Релаксация напряжения и спектроскопия импеданса как оперативные методы обнаружения литиевого покрытия на графитовых анодах в коммерческих литий-ионных элементах. J. Источники энергии 304 , 170–180 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.044

    CAS
    Статья

    Google Scholar

  • 271.

    Гуо, З.С., Чжу, Дж. Й., Фэн, Дж. М. и др.: Прямое наблюдение и объяснение литиевых дендритов промышленных графитовых электродов на месте.RSC Adv. 5 , 69514–69521 (2015). https://doi.org/10.1039/c5ra13289d

    CAS
    Статья

    Google Scholar

  • 272.

    Мехди, Б.Л., Цянь, Дж., Насыбулин, Э. и др.: Наблюдение и количественная оценка наноразмерных процессов в литиевых батареях с помощью операндно-электрохимического (S) ТЕМ. Nano Lett. 15 , 2168–2173 (2015). https://doi.org/10.1021/acs.nanolett.5b00175

    CAS
    Статья
    PubMed
    PubMed Central

    Google Scholar

  • 273.

    Сагане, Ф., Симокава, Р., Сано, Х. и др.: Наблюдения с помощью сканирующей электронной микроскопии in-situ за реакциями осаждения лития и реакции удаления на поверхности раздела стеклянный электролит из оксинитрида лития и фосфора / Cu. J. Источники энергии 225 , 245–250 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.026

    CAS
    Статья

    Google Scholar

  • 274.

    Вандт, Дж., Джейкс, П., Гранвер, Дж. И др .: Количественное и временное обнаружение литиевого покрытия на графитовых анодах в литий-ионных батареях.Матер. Сегодня 21 , 231–240 (2018). https://doi.org/10.1016/j.mattod.2017.11.001

    CAS
    Статья

    Google Scholar

  • 275.

    Gotoh, K., Izuka, M., Arai, J., et al .: Исследование ядерного магнитного резонанса In situ 7Li релаксационного эффекта в практических литий-ионных батареях. Углерод 79 , 380–387 (2014). https://doi.org/10.1016/j.carbon.2014.07.080

    CAS
    Статья

    Google Scholar

  • 276.

    Финеган Д.П., Дарси Э., Кейзер М. и др.: Температурный разгон: определение причины разрушения литий-ионных батарей во время теплового разгона. Adv. Sci. 5 , 1870003 (2018). https://doi.org/10.1002/advs.201870003

    Артикул

    Google Scholar

  • 277.

    Сан, Дж., Ли, Дж. Г., Чжоу, Т. и др .: Токсичность, серьезная проблема теплового разгона коммерческой литий-ионной батареи. Nano Energy 27 , 313–319 (2016).https://doi.org/10.1016/j.nanoen.2016.06.031

    CAS
    Статья

    Google Scholar

  • 278.

    Фернандес, Ю., Брай, А., де Персис, С.: Идентификация и количественная оценка газов, выделяемых во время испытаний на неправильное использование путем перезарядки коммерческой литий-ионной батареи. J. Источники энергии 389 , 106–119 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.034

    CAS
    Статья

    Google Scholar

  • Battery Technologies — узнать.sparkfun.com

    Добавлено в избранное

    Любимый

    45

    Варианты аккумуляторов

    Доступно множество различных аккумуляторных технологий. Есть несколько действительно отличных ресурсов для мельчайших подробностей о химическом составе батарей. Википедия особенно хороша и всеобъемлющая. В этом руководстве рассматриваются наиболее часто используемые аккумуляторы для встраиваемых систем и электроники «сделай сам».

    Рекомендуемая литература

    Есть некоторые концепции и знания, которые вы, возможно, захотите узнать, прежде чем читать это руководство:

    Что такое схема?

    Каждый электрический проект начинается со схемы.Не знаю, что такое схема? Мы здесь, чтобы помочь.

    Что такое электричество?

    Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

    Хотите изучить различные батареи?

    Мы вас прикрыли!

    Щелочная батарея 9 В

    В наличии

    PRT-10218

    Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…

    1


    Терминология

    Вот несколько терминов, которые часто используются, когда говорят об аккумуляторах.

    Емкость — Батареи имеют разные номиналы в зависимости от количества энергии, которое может хранить данная батарея. Когда аккумулятор полностью заряжен, его емкость — это количество энергии, которое в нем содержится.Батареи одного типа часто оцениваются по величине тока, которую они могут выдавать с течением времени. Например, есть батареи емкостью 1000 мАч (миллиампер-час) и 2000 мАч.

    Номинальное напряжение ячейки — Среднее напряжение, выводимое ячейкой при зарядке. Номинальное напряжение батареи зависит от химической реакции за ней. Свинцово-кислотный автомобильный аккумулятор выдает 12 В. Литиевая батарейка типа «таблетка» выдает 3 В.

    Ключевым словом здесь является «номинальное», фактическое измеренное напряжение на аккумуляторе будет уменьшаться по мере его разряда.Полностью заряженный LiPo аккумулятор будет вырабатывать около 4,23 В, а в разряженном состоянии его напряжение может быть ближе к 2,7 В.

    Форма — Батареи бывают разных размеров и форм. Термин «AA» относится к определенной форме и стилю ячейки. Есть большое разнообразие.

    Сравнение первичных и вторичных батарей — первичные батареи являются синонимом одноразового использования. После полного опорожнения первичные элементы не могут быть перезаряжены (надежно / безопасно). Вторичные батареи более известны как перезаряжаемые. Для их полной резервной зарядки требуется другой источник питания, но они могут полностью заряжаться / разряжаться много раз в течение своего срока службы.Обычно первичные батареи имеют более низкую скорость разряда, поэтому они служат дольше, но они могут быть менее экономичными, чем аккумуляторные батареи.

    Обычные батареи, их химический состав и номинальное напряжение
    Форма батареи Химия Номинальное напряжение Перезаряжаемый?
    AA, AAA, C и D Щелочные или угольно-цинковые 1,5 В Нет
    9V Щелочные или угольно-цинковые 9V Нет
    Монетная ячейка Литий Нет
    Серебряная плоская упаковка Литий-полимерный (LiPo) 3.7 В Да
    AA, AAA, C, D (перезаряжаемый) NiMH или NiCd 1,2 В Да
    Автомобильный аккумулятор Шестиэлементный свинцово-кислотный 12,6 В Да

    Плотность энергии — Комбинируя емкость с формой и размером батареи, можно рассчитать плотность энергии батареи. Разные технологии допускают разную плотность. Например, литиевые батареи обычно содержат больше сока в заданном объеме, чем щелочные батареи или батарейки типа «таблетка».

    Скорость внутреннего разряда — Вы когда-нибудь пробовали завести машину, которая простаивает 6 месяцев? Батареи разряжаются, когда они лежат на полке или когда они не используются. Скорость, с которой батарея разряжается с течением времени, называется скоростью внутренней разрядки.

    Безопасность. Поскольку батареи накапливают энергию, они представляют собой очень крошечные взрывчатые вещества. Чтобы предотвратить повреждение, батареи сконструированы так, чтобы быть максимально безопасными. Большинство технологий аккумуляторов рассчитаны на безопасную разрядку в случае неправильного использования.Если вы неправильно подключите щелочную батарею, она может нагреться на ощупь, но не должна загореться. Большинство литий-полимерных аккумуляторов имеют встроенные схемы безопасности, чтобы предотвратить повреждение аккумулятора и предотвратить его небезопасное использование.

    Полный список терминов и технический обзор Википедия — [отличный ресурс] (http://en.wikipedia.org/wiki/Battery_ (электричество)).

    Литий-полимерный

    Литий-полимерные батареи

    (часто сокращенно LiPo) очень полезны для встроенной электроники.Они предлагают самую высокую плотность, доступную на рынке. Поскольку в сотовых телефонах преимущественно используются батареи этого типа, их легко найти по разумным ценам. Они требуют специальной зарядки, поэтому обязательно используйте подходящее зарядное устройство для работы. SparkFun оснащен различными литий-полимерными батареями 3,7 В, многие из которых перечислены ниже. Емкость выбранной вами батареи будет зависеть от предполагаемого времени работы вашего проекта, ограничений по размеру и других факторов.

    Литий-ионный аккумулятор — 2 Ач

    В наличии

    PRT-13855

    Это очень тонкие и очень легкие батареи, основанные на химическом составе литий-ионных аккумуляторов.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

    .

    7

    Номинальное напряжение

    Индивидуальный элемент LiPo имеет номинальное напряжение 3,7 В. При полной зарядке вы увидите на элементе почти 4,3 В, но при нормальном использовании оно быстро упадет до 3,7 В. В разряженном состоянии в ячейке будет около 3 В. Это означает, что ваш проект должен будет обрабатывать различные напряжения, если вы работаете напрямую от ячейки.Если вам нужно 5 В, вам нужно будет соединить два LiPos последовательно, чтобы создать блок на 7,4 В и снизить напряжение до 5 В.

    Разъемы

    В мире малогабаритной электроники большинство литий-полимерных аккумуляторов имеют различные 2-контактные разъемы. В SparkFun мы используем JST-коннектор. Это предотвращает неправильное подключение аккумулятора. Разъем имеет фрикционную посадку, поэтому для аккуратного извлечения аккумулятора часто используются плоскогубцы.

    Зарядка и разрядка

    Для зарядки LiPo аккумуляторов создано множество недорогих зарядных устройств.Обычно они используют USB для зарядки аккумулятора. Не пытайтесь заряжать LiPos без зарядного устройства. Аккумулятор LiPo может быть поврежден из-за перезарядки, поэтому используйте специально разработанное зарядное устройство LiPo, например, здесь:

    Перед зарядкой литий-ионного аккумулятора убедитесь, что вы знаете его емкость и ток заряда, подаваемый зарядным устройством. Дополнительную информацию можно найти в следующем руководстве: Установка зарядного тока.

    Батареи

    LiPo также могут быть повреждены, если они слишком сильно разряжены.Чтобы защитить от этого, почти все LiPo батареи имеют небольшую цепь безопасности, встроенную в верхнюю часть элемента, которая отключает батарею, если напряжение упадет ниже определенного порога (обычно 3 В).

    Батареи

    LiPo имеют очень низкую скорость внутреннего разряда. Это делает их хорошим кандидатом для проектов с низким энергопотреблением, требующих выполнения в течение многих дней или месяцев.

    Соблюдайте плотность энергии: эти батареи обладают мощным зарядом и могут непрерывно выдавать несколько ампер.Защита от короткого замыкания отключит аккумулятор при обнаружении короткого замыкания, но при использовании этих аккумуляторов в проектах руководствуйтесь здравым смыслом.

    Мы рекомендуем LiPo почти для каждого портативного приложения. Они довольно прочные и при безопасном использовании являются отличным источником энергии.

    Другие типы литий-ионных батарей

    Круглые литий-ионные батареи большой емкости

    Эти батареи в основном использовались в приложениях типа фонариков, но их легко использовать и устанавливать, и они очень экономичны.

    • Номинальное напряжение — Эти батареи также имеют номинальное напряжение 3,7 В, но в отличие от плоских LiPo батарей, эти круглые батареи НЕ имеют встроенной схемы защиты. При зарядке и разрядке этих батарей необходимо соблюдать особую осторожность, поэтому чтобы они не были повреждены. Более подробную информацию о схемах защиты можно найти здесь.

    • Разъемы — Эти батареи могут быть легко интегрированы в проекты со специальными держателями для батарей:

    • Зарядка и разрядка — Поскольку в этих батареях нет схемы защиты, пользователь должен учитывать возможность чрезмерной или недостаточной зарядки, чтобы батарея не была повреждена.Мы рекомендуем универсальное зарядное устройство типа этого:

    Литий-ионные аккумуляторы высокого разряда

    Литий-ионные аккумуляторы с высокой степенью разряда — отличный способ запитать любой радиоуправляемый, роботизированный или портативный проект, которому нужна небольшая батарея с большой мощностью.

    • Номинальное напряжение — Они имеют номинальное напряжение 7,4 В и, как и круглые батареи, НЕ имеют встроенной схемы защиты. При зарядке и разрядке этих аккумуляторов необходимо соблюдать особую осторожность, чтобы не повредить их.Более подробную информацию о схемах защиты можно найти здесь.

    • Разъемы — Разъем для зарядки представляет собой 3-контактный разъем для зарядки JST-XH. Разряд осуществляется через разрядные провода Dean’s Connector.

    • Зарядка и разрядка -Поскольку на этих батареях нет схемы защиты, пользователь должен учитывать возможность чрезмерной или недостаточной зарядки, чтобы батарея не была повреждена. Поскольку это, как правило, двухэлементные аккумуляторные батареи, требуется специальное зарядное устройство.Этот аккумулятор несовместим с одноэлементными зарядными устройствами. Мы рекомендуем специализированное зарядное устройство, например, это:

      .

    Никель-металлогидридные батареи

    (часто сокращенно NiMH) — это проверенная технология перезарядки. Эти батареи часто дешевле, чем другие химические, но имеют меньшую плотность, чем LiPo. NiMH аккумуляторы требуют менее строгих кривых зарядки, что снижает стоимость зарядных устройств. NiMH часто встречаются в более дешевых электронных устройствах, таких как зубные щетки и беспроводные бритвы, где выходное напряжение не вызывает беспокойства (вы заметите, что ваша зубная щетка работает медленнее, но продолжает работать).

    Никель-металлгидридный аккумулятор 2500 мАч — AA

    В наличии

    PRT-00335

    Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

    Каждая ячейка выдает номинальное напряжение 1,2 В. Это очень похоже на щелочные батареи того же размера, что и выход 1.5В. Объединение четырех никель-металлгидридных аккумуляторов типа AA даст вам батарею 4,8 В, которая должна работать с большинством систем 5 В, но будет падать напряжение по мере разряда батареи.

    Зарядка и разрядка

    NiMH аккумуляторы сами по себе не имеют цепей защиты от разряда. Схема защиты от разряда предотвращает разряд аккумулятора ниже определенного уровня напряжения, чтобы предотвратить повреждение аккумулятора. Более подробную информацию о NiMH батареях и чрезмерной разрядке можно найти здесь.

    Из-за их сходства с обычными бытовыми аккумуляторами зарядка NiMH аккумуляторов часто выполняется с помощью зарядных устройств, которые подключаются к розетке.Мы рекомендуем никель-металлгидридные аккумуляторы для приложений, в которых устройство уже разработано для использования батарей типа AA.

    Ячейка для монет

    Батареи типа «таблетка»

    отлично подходят для очень небольших проектов с низким энергопотреблением. Эти батарейки дешевы! Купите их оптом, если вам нужно много. Они отлично подходят для тестирования светодиодов. Вы найдете батарейки такого типа, спрятанные внутри пультов дистанционного управления, электронных свечей и множества одноразовых устройств меньшего размера.

    Эти батареи не перезаряжаются.Есть несколько более сложных платных версий, но подавляющее большинство монетных ячеек следует выбросить после использования.

    Химический состав и технологии монетных ячеек различаются. Некоторые щелочные, другие литиевые. Щелочные батарейки типа «таблетка» имеют номинальное напряжение 1,5 В. Литиевые батарейки типа «таблетка», с другой стороны, имеют номинальное напряжение 3 В.

    Батареи типа «таблетка» бывают разных размеров, каждая со специальным кодом, обозначающим размер и химический состав.Все щелочные батарейки начинаются с буквы «L», в то время как все литиевые батарейки имеют префикс «C». Популярный CR2032, например, представляет собой литиевую батарею (номинальное напряжение 3 В) диаметром 20 мм и высотой 3,2 мм. LR1154 (он же LR44) представляет собой щелочную батарею (1,5 В) размером 11 мм в поперечнике и 5,4 мм в высоту.

    Ячейки для монет

    отлично подходят для питания ATtiny или других небольших микроконтроллеров и светодиодных проектов.

    Щелочной

    Все мы выросли на одноразовых батареях этого типа.Эти батареи существуют уже много десятилетий, поэтому вы найдете их повсюду! Также имеется множество держателей для батареек и аксессуаров для батареек AA и 9 В.

    Эти батареи дешевы, безопасны в использовании и доступны везде, но, к сожалению, их нельзя перезаряжать. Щелочная химия делает эти батареи особенно надежными (безопасными) для идиотов.

    AA и AAA являются наиболее распространенными щелочными батареями и номинально выдают 1,2 В (но при первом использовании они составляют около 1,5 В). Поскольку AA выводят 1.2 В, вам нужно будет объединить их в пакеты по 3 или 4 для работы вашей системы 3,3 или 5 В. Батареи 9V, очевидно, номинально 9V.

    Батарея на 9 В с соединительным кабелем — отличный и быстрый способ сделать проект портативным, но не ожидайте, что батарея прослужит очень долго! Несмотря на то, что он выдает 9 вольт, емкость 9-вольтовой батареи довольно мала.

    Щелочная батарея 9 В

    В наличии

    PRT-10218

    Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…

    1

    Мы регулярно используем этот тип батарей с новичками. Им часто удобно пользоваться этим типом батарей, и они могут легко их найти. Если они прикрепят батарею обратной стороной, она может нагреться, но это не повлечет за собой серьезных повреждений. Как только учащийся освоит основы, мы обычно переводим пользователей на LiPos, потому что они служат дольше и их можно заряжать.

    Ресурсы и дальнейшее развитие

    Теперь, когда вы знаете немного больше о технологиях аккумуляторов, вам следует ознакомиться с этими дополнительными учебными пособиями и проектами:

    Основные сведения о разъеме

    Разъемы — главный источник путаницы для людей, только начинающих заниматься электроникой. Количество различных вариантов, терминов и названий соединителей может сделать выбор одного или найти тот, который вам нужен, непростым.Эта статья поможет вам окунуться в мир разъемов.

    Как пользоваться мультиметром

    Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

    Основы LilyPad: работа над вашим проектом

    Узнайте о вариантах питания ваших проектов LilyPad, о безопасности и уходе за LiPo батареями, а также о том, как рассчитывать и учитывать ограничения мощности для ваших проектов.

    .